CONCEPT: MOLECULAR GEOMETRY

• True shape of a molecule that takes into account differences in repulsion between lone pairs and surrounding elements.

☐ Treats lone pairs and surrounding elements as _____.

Two Electron Groups

• Central elements with 2 electron groups have _____ lone pair(s) to give only one possible molecular geometry.

2 Electron Groups					
Electron Groups	Bonding Groups	Lone Pairs	Shapes	Visual	Molecular Geometry
2			CI—Be—CI: O—C—O H—C—N:		

Three Electron Groups

• Central elements with 3 electron groups can have ____ or ___ lone pair(s) to give two possible molecular geometries.

3 Electron Groups					
Electron Groups	Bonding Groups	Lone Pairs	Shapes	Visual	Molecular Geometry
3					
			Sn Cl.		

EXAMPLE: Determine the molecular geometry for the following molecule: BeH₃⁻

CONCEPT: MOLECULAR GEOMETRY

Four Electron Groups

• Central elements with 4 electron groups can have ____ to ___ lone pair(s) to give three possible molecular geometries.

Five Electron Groups

• Central elements with 5 electron groups can have ____ to ___ lone pair(s) to give four possible molecular geometries.

EXAMPLE: Draw and determine the electron geometry for the following molecule: SOCl₄

CONCEPT: MOLECULAR GEOMETRY

Six Electron Groups

• Central elements with 6 electron groups can have ____ to ___ lone pair(s) to give three possible molecular geometries.

6 Electron Groups					
Electron Groups	Bonding Groups	Lone Pairs	Shapes :F: :F. SF: :F: :F: :F:	Visual	Molecular Geometry
6			:Br: :Br Br: :Br Br:		
			:Cl Xe Cl:		

EXAMPLE: Determine the molecular geometry for the following ion: KrCl₅+

 $\label{eq:practice:problem} \textbf{PRACTICE:} \ \ \text{Determine the molecular geometry for the following molecule:} \ \ \text{SeH}_2\text{Cl}_2.$

- a) T-shaped
- b) Seesaw
- c) Square pyramidal
- d) Square planar

CONCEPT: MOLECULAR GEO PRACTICE: Determine the mo	<u></u>	allowing molecule: CHCIO	
a) Trigonal pyramidal	b) T-shaped	c) Trigonal planar	d) Tetrahedral
a) mgonai pyramidai	b) 1-Shapeu	c) mgonai pianai	u) relialieulai
PRACTICE: Determine the mo	lecular geometry for the fo	ollowing molecule: FSSF.	
a) Tetrahedral	b) Bent	c) Trigonal planar	d) Trigonal pyramida
DDA OTIOF: Determine the man	ll	Having was last last IE =	
PRACTICE: Determine the mo	lecular geometry for the fo	ollowing molecule: IF4 ⁻ .	
a) Square planar	b) Square pyramidal	c) Trigonal bipyramidal	d) Seesaw