CONCEPT: LE	CHATEL	JER'S P	RINCIPLE
-------------	--------	---------	----------

■ Le Chatelier's Principle: if a chemical reaction at	$_$ is disturbed, it adjusts itself by shifting in a certain direction.
$\hfill\Box$ Direction of the shift depends on minimizing or car	nceling the disturbance & re-establishing
☐ The following disturbances are carried out at consi	tant .

Disturbances of Chemical Equilibrium			
Factors	Type of Change	Example	Explanation
Concentrations only (g) & (aq)	□ [Reactant] or □ [Product]	2A (g) + B(aq) C (g) + 4D (g)	□ more will be made
Pressure & Volume	Pressure or Volume	moles gas moles gas 2A (g) + B(aq) C (g) + 4D (g)	□ shifts to side with moles of gas
Inert Gas (Noble Gases)	□ at constant V	+ Ne (g) 2A (g) + B(aq) C (g) + 4D (g)	□ partial pressures are changed □ if V or P not mentioned, assume shift
	□ at constant P	+ Ne (g) 2A (g) + B(aq) — C (g) + 4D (g)	□ volume increases - shifts to side with moles of gas

□ Note: adding Catalysts _____ cause a shift in equilibrium position, it simply changes the reaction rates.

EXAMPLE: Consider endothermic reaction at equilibrium: 6 CO ₂ (g) + 6 H ₂ O (g) $\stackrel{\longleftarrow}{\longleftarrow}$ C ₆ H ₁₂ O ₆ (s) + 6 O ₂ (g)		
Predict if reaction will shift to the right, left or no shift after each disturbance.		
a) some O ₂ removed	c) volume of container decreased	
b) some C ₆ H ₁₂ O ₆ added	d) Xe gas added to reaction mixture	

CONCEPT: LE CHATELIER'S PRINCIPLE

Temperature Changes

 Changing the 	e temperature of the reaction at equilibrium will	the equilibrium and cause a
	of a reaction plays a big role in the direction	n of the change.
	- Recall: equilibrium constant is temperature depende	ent.

Temperature Changes			
Enthalpy Type	Type of Change	Example	Explanation
Exothermic (-∆H)	□ Temp	2A (g) + B(aq) C (g) + 4D (g) + heat	□ shifts away from heat
Endothermic (+∆H)	Temp	heat + 2A (g) + B(aq) C (g) + 4D (g)	□ shifts towards heat

EXAMPLE: Consider the reaction: $N_2(g) + O_2(g) + Br_2(g) \longrightarrow 2 \text{ NOBr}(g)$ $\Delta H = -32.5 \text{ kJ}$

The following changes will shift equilibrium to the left except:

The fellowing shariges will office equilibrium to the fore except

c) Increase partial pressure of NOBr

e) Increase Pressure in container

b) Adding some NOBr

a) Remove some N₂

d) Decrease the temperature

f) Decrease the container volume

CONCEPT: LE CHATELIER'S PRINCIPLE

PRACTICE: Select correct answer(s) that would yield more products in the following reaction.

$$CH_4(g) + 4 F_2(g) \longrightarrow CF_4(g) + 4 HF(g)$$
 $\Delta H = 38.2 \text{ kJ/mol}$

- a) increase pressure
- c) add 0.31 moles of F₂
- e) cool down reaction vessel

- b) increase temperature
- d) add some Xenon gas
- f) decrease volume

PRACTICE: At 26°C Kp = 2.3×10^{-12} and at 56°C Kp = 3.7×10^{-5} for the hypothetical reaction. Determine if the reaction is endothermic or exothermic. AB (s) + 2 B (g) \longrightarrow 3 BB (g) + C (g)

- a) endothermic
- b) exothermic
- c) enthalpy change equal to zero