CONCEPT: BALANCING REDOX REACTIONS: BASIC SOLUTIONS

- Balancing Basic Redox Reactions requires all the same steps as balancing in an acidic solution plus __ additional step.
 - □ For basic redox reactions we generally have the presence of the _____ ion.

EXAMPLE: Balance the following redox reaction if it is found to be in a basic solution.

$$MnO_4^-(aq) + N_2H_4(aq) \longrightarrow Mn^{2+}(aq) + NO_3^-(aq)$$

STEP 1: Break the full redox reaction into 2 half equations.

□ Focus on the elements that are not **oxygen** or **hydrogen** to determine the 2 half-reactions.

- **STEP 2:** For each half reaction, balance elements that are not **oxygen** or **hydrogen**.
- **STEP 3:** For each half reaction, balance the number **oxygens** by adding ...
- **STEP 4:** For each half reaction, balance the number **hydrogens** by adding ______.
- **STEP 5:** Balance the overall charge by adding **electrons** to the more _____ charged side of each half reaction.
 - □ If the number of electrons of both half reactions differ then multiply to get the lowest common multiple.
- **STEP 6:** Combine the half reactions and cross out reaction intermediates.

Balance any remaining H⁺ by adding an equal amount of **OH**⁻ to both sides of the equation.

- □ When H⁺ and OH are on the same side they will combine together to form H₂O.
- \Box If H₂O is on both sides of the equation then treat them as reaction intermediates.

CONCEPT: BALANCING REDOX REACTIONS: BASIC SOLUTIONS

PRACTICE: Balance the following redox reaction in a basic solution.

$$H_2O_2$$
 (aq) + CIO_2 (aq) \longrightarrow CIO_2^- (aq) + O_2 (g)

PRACTICE: Balance the following redox reaction in a basic solution.

$$CIO_2^-$$
 (aq) \longrightarrow CI^- (aq) + CIO_4^- (aq)