CONCEPT: BALANCING REDOX REACTIONS: BASIC SOLUTIONS - Balancing Basic Redox Reactions requires all the same steps as balancing in an acidic solution plus __ additional step. - □ For basic redox reactions we generally have the presence of the _____ ion. **EXAMPLE:** Balance the following redox reaction if it is found to be in a basic solution. $$MnO_4^-(aq) + N_2H_4(aq) \longrightarrow Mn^{2+}(aq) + NO_3^-(aq)$$ **STEP 1:** Break the full redox reaction into 2 half equations. □ Focus on the elements that are not **oxygen** or **hydrogen** to determine the 2 half-reactions. - **STEP 2:** For each half reaction, balance elements that are not **oxygen** or **hydrogen**. - **STEP 3:** For each half reaction, balance the number **oxygens** by adding ... - **STEP 4:** For each half reaction, balance the number **hydrogens** by adding ______. - **STEP 5:** Balance the overall charge by adding **electrons** to the more _____ charged side of each half reaction. - □ If the number of electrons of both half reactions differ then multiply to get the lowest common multiple. - **STEP 6:** Combine the half reactions and cross out reaction intermediates. Balance any remaining H⁺ by adding an equal amount of **OH**⁻ to both sides of the equation. - □ When H⁺ and OH are on the same side they will combine together to form H₂O. - \Box If H₂O is on both sides of the equation then treat them as reaction intermediates. ## **CONCEPT:** BALANCING REDOX REACTIONS: BASIC SOLUTIONS **PRACTICE:** Balance the following redox reaction in a basic solution. $$H_2O_2$$ (aq) + CIO_2 (aq) \longrightarrow CIO_2^- (aq) + O_2 (g) **PRACTICE:** Balance the following redox reaction in a basic solution. $$CIO_2^-$$ (aq) \longrightarrow CI^- (aq) + CIO_4^- (aq)