CONCEPT: BOND ENERGY

- Bond Energy (Bond Enthalpy; ΔH_{B.E.}): the amount of energy stored in a bond between atoms in a molecule.
 - \square Bond Energy values can be used to calculate the _____ of reaction (ΔH_{Rxn}).
 - □ Endothermic Process: Energy is ______ to break a bond and a has a _____ sign.
 - □ Exothermic Process: Energy is ______ to form a bond and a has a _____ sign.

Enthalpy of Reaction Formulas

When given individual bond enthalpies (bond energies).

Enthalpy of Reaction Formula (ΔH_{RF}^{o})

 $\triangle H_{Rxn}^{o}$ = Reactants – Products

When given the enthalpy of formation for a compound.

Enthalpy of Reaction Formula (ΔH_f°)

 $\triangle H_{Rxn}^{o}$ = Products – Reactants

EXAMPLE: The formation of ammonia is accomplished by the reaction between hydrogen and nitrogen gas.

Calculate the ΔH^{o}_{rxn} if the bond enthalpies of N=N, H-H and N-H are 945 kJ/mol, 432 kJ/mol and 391 kJ/mol respectively.

- STEP 0: CHECK to see if the chemical equation is balanced and if not then do the necessary steps to balance it.
 - $\ \square$ If the Lewis Dot Structures is not given, then you will have to draw them as well.
- STEP 1: For the reactants and products, multiply the coefficients of each bond-type with its bond enthalpy value, $\Delta H_{\rm BF}$.

$$\text{Re ac tants} - \text{Pr oducts} = \left| \left(\underline{\hspace{0.5cm}} N \equiv N \times \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} \frac{kJ}{\text{mol}} \right) + \left(\underline{\hspace{0.5cm}} H - H \times \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} \frac{kJ}{\text{mol}} \right) \right| - \left| \left(\underline{\hspace{0.5cm}} N - H \times \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} \frac{kJ}{\text{mol}} \right) \right|$$

STEP 2: Take both totals and place them into the enthalpy of reaction formula to determine $\Delta H_{\mathsf{Rxn}}^{\mathsf{o}}$.

$$\Delta H_{Rxn}^{o} = Reactants - Products =$$
 $=$ $=$

CONCEPT: BOND ENERGY

PRACTICE: Consider the following equation:

$$H_2S(g) + 3F_2(g) \longrightarrow SF_4(g) + 2HF(g) \Delta H = -1301$$

Determine the bond enthalpy value for the F–S bond.

Standard Bond Energies			
Bonds	ΔH kJ/mol		
S–H	347		
F–H	565		
F–F	159		

PRACTICE: Use the bond energies to estimate the enthalpy of reaction for the combustion of 5 moles of acetylene:

Standard Bond Energies			
Bonds	∆H kJ/mol	Bonds	ΔH kJ/mol
C-C	347	C=O	745
C=C	614	C≡O	1070
C≡C	839	0–0	204
C–H	413	O=O	498
C-O	358	О–Н	467

$$2 C_2H_2(g) + 5 O_2(g) \longrightarrow 4 CO_2(g) + 2 H_2O(g)$$