CONCEPT: LATTICE ENERGY

Lattice Formation Energy: change in energy when separated gaseous ions combine to form an ionic

Na⁺ (g) + Cl⁻ (g)
$$\longrightarrow$$
 \triangle H^o_{latt} = -787.3

□ **Exothermic Reaction**: Reaction *releases* energy in order to create a bond.

- More _____ lattice energy value = more exothermic reaction.

EXAMPLE: The lattice formation of MgBr₂ is the energy change for which one of the following processes?

I. Mg (s) +
$$Br_2$$
 (g) \longrightarrow Mg Br_2 (s)

II.
$$Mg(g) + 2 Br(g) \longrightarrow MgBr_2(s)$$

III.
$$Mg^{2+}(g) + 2 Br^{-}(g) \longrightarrow MgBr_2(s)$$

IV.
$$Mg^{2+}(g) + 2 Br^{-}(g) \longrightarrow MgBr_2(g)$$

V.
$$MgBr_2$$
 (aq) \longrightarrow $MgBr_2$ (s)

• Lattice Dissociation Energy: change in energy of _____ mole of solid crystal as it is scattered into gaseous ions.

____ → Na⁺ (g) + Cl⁻ (g)
$$\triangle$$
 H° = + 787.3

□ **Endothermic Reaction**: Reaction *absorbs* energy in order to create a bond.

- More _____ lattice energy value = more endothermic reaction.

EXAMPLE: Which of the following reactions is associated with the lattice dissociation of Li₂O?

I. 2 Li⁺ (g) + O²⁻ (g)
$$\longrightarrow$$
 Li₂O (s)

II. 2 Li (s) +
$$O_2$$
 (g) \longrightarrow Li₂O (s)

III. 2 Li⁺ (g) +
$$O^{2-}$$
 (aq) \longrightarrow Li₂O (s)

IV.
$$\text{Li}_2\text{O (s)} \longrightarrow 2 \text{ Li}^+ (g) + \text{O}^{2-} (g)$$

V.
$$\text{Li}_2\text{O}$$
 (s) \longrightarrow Li (g) + O_2 (g)

CONCEPT: LATTICE ENERGY

Lattice Energy Formula

- By simplifying Coulomb's Law, a general formula for lattice energy can be used to determine ionic bond strength.
 - \Box The $\underline{\hat{1}}$ the lattice energy then the ______ the ionic bond.

□ Radius of the ion = _____ or Row on the Periodic Table

EXAMPLE: Which compound possesses the strongest ionic bond: MgBr₂ or KCl?

PRACTICE: The lattice energy for ionic crystals decreases as the charge of the ions _____ and the size of the ions _____.

- a) Increases, increases
- b) Increases, decreases
- c) Decreases, increases
- d) Decreases, decreases

CONCEPT: LATTICE ENERGY

Physical Properties

The lattice energy of an ionic solid has a direct impact on its physical properties.				
\Box Recall, an $\underline{\hat{\mathbb{T}}}$ in the lattice energy causes an in the strength of an ionic bond.				
- An <u>Û</u> in t	he lattice energy the	e boiling point,	the melting point, an	d the solubility.
EXAMPLE : Choose the compound below that should have the highest melting point according to the ionic bonding				
model.				
a) AIN	b) NaF		c) MgO	d) NaCl
PRACTICE: Which of the following compounds would you expect to have the highest boiling point?				
a) MgCl ₂	b) SrO	c) SrCl ₂	d) CsI	e) LiBr

PRACTICE: The solubilities of CaCrO₄ and PbCrO₄ in water at 25 °C are approximately 0.111 g/L and 0.0905 g/L in H₂O

respectively. Based on this information, which compound do you think has the smaller lattice energy?