CONCEPT: LATTICE ENERGY Lattice Formation Energy: change in energy when separated gaseous ions combine to form an ionic Na⁺ (g) + Cl⁻ (g) $$\longrightarrow$$ \triangle H^o_{latt} = -787.3 □ **Exothermic Reaction**: Reaction *releases* energy in order to create a bond. - More _____ lattice energy value = more exothermic reaction. **EXAMPLE:** The lattice formation of MgBr₂ is the energy change for which one of the following processes? I. Mg (s) + $$Br_2$$ (g) \longrightarrow Mg Br_2 (s) II. $$Mg(g) + 2 Br(g) \longrightarrow MgBr_2(s)$$ III. $$Mg^{2+}(g) + 2 Br^{-}(g) \longrightarrow MgBr_2(s)$$ IV. $$Mg^{2+}(g) + 2 Br^{-}(g) \longrightarrow MgBr_2(g)$$ V. $$MgBr_2$$ (aq) \longrightarrow $MgBr_2$ (s) • Lattice Dissociation Energy: change in energy of _____ mole of solid crystal as it is scattered into gaseous ions. ____ → Na⁺ (g) + Cl⁻ (g) $$\triangle$$ H° = + 787.3 □ **Endothermic Reaction**: Reaction *absorbs* energy in order to create a bond. - More _____ lattice energy value = more endothermic reaction. **EXAMPLE:** Which of the following reactions is associated with the lattice dissociation of Li₂O? I. 2 Li⁺ (g) + O²⁻ (g) $$\longrightarrow$$ Li₂O (s) II. 2 Li (s) + $$O_2$$ (g) \longrightarrow Li₂O (s) III. 2 Li⁺ (g) + $$O^{2-}$$ (aq) \longrightarrow Li₂O (s) IV. $$\text{Li}_2\text{O (s)} \longrightarrow 2 \text{ Li}^+ (g) + \text{O}^{2-} (g)$$ V. $$\text{Li}_2\text{O}$$ (s) \longrightarrow Li (g) + O_2 (g) ### **CONCEPT:** LATTICE ENERGY ### **Lattice Energy Formula** - By simplifying Coulomb's Law, a general formula for lattice energy can be used to determine ionic bond strength. - \Box The $\underline{\hat{1}}$ the lattice energy then the ______ the ionic bond. □ Radius of the ion = _____ or Row on the Periodic Table **EXAMPLE:** Which compound possesses the strongest ionic bond: MgBr₂ or KCl? **PRACTICE:** The lattice energy for ionic crystals decreases as the charge of the ions _____ and the size of the ions _____. - a) Increases, increases - b) Increases, decreases - c) Decreases, increases - d) Decreases, decreases # **CONCEPT:** LATTICE ENERGY # **Physical Properties** | The lattice energy of an ionic solid has a direct impact on its physical properties. | | | | | |--|-----------------------|----------------------|-----------------------|-------------------| | \Box Recall, an $\underline{\hat{\mathbb{T}}}$ in the lattice energy causes an in the strength of an ionic bond. | | | | | | - An <u>Û</u> in t | he lattice energy the | e boiling point, | the melting point, an | d the solubility. | | EXAMPLE : Choose the compound below that should have the highest melting point according to the ionic bonding | | | | | | model. | | | | | | a) AIN | b) NaF | | c) MgO | d) NaCl | PRACTICE: Which of the following compounds would you expect to have the highest boiling point? | | | | | | a) MgCl ₂ | b) SrO | c) SrCl ₂ | d) CsI | e) LiBr | PRACTICE: The solubilities of CaCrO₄ and PbCrO₄ in water at 25 °C are approximately 0.111 g/L and 0.0905 g/L in H₂O respectively. Based on this information, which compound do you think has the smaller lattice energy?