CONCEPT: CONSTANT-VOLUME CALORIMETRY

Heat of Combustion

- Heat of Combustion: amount of heat released when ______ of a substance is burned or combusted.
 - □ Recall, a combustion reaction normally involves a compound with _____ or ____ reacting with O₂.
 - □ Associated with any combustion reaction is a *heat of combustion* value (______).

EXAMPLE: Which of the following statements is true about the combustion of propane?

1
$$C_3H_8(g)$$
 + **5** $O_2(g)$ \longrightarrow **3** $CO_2(g)$ + **4** $H_2O(g)$ $\Delta H_{comb}^o = -2222 \text{ kJ}$

- a) It is endothermic
- b) It is exothermic
- c) Absorbs heat from the surroundings
- d) None of the above

Bomb Calorimeter

- A Bomb Calorimeter is a steel container with a combustible sample submerged in a known quantity of water.
 - □ Constant Volume Calorimetry uses it to determine the heat released during a combustion reaction.
 - □ **Constant Volume**: The calorimeter has a fixed volume and doesn't expand after the sample is combusted.
 - \Box Since the combustion reaction is exothermic: $\Delta H_{comb}^{o} = \underline{\hspace{1cm}}$.

EXAMPLE: The heat capacity of a bomb calorimeter was determined by burning 12.13 g ethane (heat of combustion = 1560 kJ/mol) in the bomb. If the temperature changed by 15.2 °C, what is the heat capacity of the bomb?