CONCEPT: THE ELECTRON CONFIGURATION: EXCEPTIONS

Electron Orbital Stability

• p and d subshell orbitals are most stable when they are half-filled or totally-filled with electrons because of symmetry.

	Symmetrical Distribution													
	Half-Filled		Totally-Filled											
р		р												
d		d												

Exceptions to Electron Configurations

• Starting from chromium, as the atomic number (Z) _____, exceptions to electron configurations can be observed.

MEMORY TOOL Chromium (Z = 24) and there are 2 and 4. To get to the other column remember 2 skip next 4.

	3B	4B	5B	6B	7B	8B		1B	2B	
	3	4	5	6	7	8	9	10	11	12
Period 4	Sc Sc	Ti	23 V	Cr	Mn	Fe	²⁷ Co	28 Ni	Cu	Zn
Period 5	39 Y	Zr	Nb	42 M O	TC	44 Ru	₄₅ Rh	46 Pd	Ag	Cd
Period 6	₅, La	72 Hf	⁷³ Та	74 W	75 Re	76 Os	ir	78 Pt	79 Au	⁸⁰ Hg
Period 7	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	Rg	Cn

□ An s orbital electron can be promoted to create half-filled orbitals with _____- elements.

$$Cr (Z = 24) [Ar] 4s^2 3d^4$$

$$Cr (Z = 24) [Ar] 4s^{3} 3d^{3}$$

□ An s orbital electron can be promoted to create completely-filled orbitals with _____- elements.

Cu (Z = 29) [Ar]
$$4s^23d^9$$

Cu (Z = 29) [Ar]
$$4s^{3}$$
3d

[Ar]

[Ar] [

EXAMPLE: Based on the exceptions, provide the condensed electron configuration for the silver atom.

CONCEPT: THE ELECTRON CONFIGURATION: EXCEPTIONS

PRACTICE: Illustrate the exception to the electron configuration of molybdenum.

Mo (Z = 42)

PRACTICE: Which of the following is the correct electron configuration of gold?

- a) [Xe] 6s²4f¹⁴5d⁹
- b) [Ar] 5s14f145d10
- c) [Xe] 6s¹5d¹⁰
- d) [Xe] 6s¹4f¹⁴5d¹⁰
- e) [Xe] 6s¹4f¹5d¹⁰

PRACTICE: A comparison of the electron configurations of palladium (Pd) and silver (Ag) indicates that:

- a) Ag has 2 more *d* electrons and the same number of *s* electrons as Pd.
- b) Ag has 1 more *d* electron and the same number of *s* electrons as Pd.
- c) Ag has 2 more *d* electrons and 1 less *s* electron than Pd.
- d) Ag has 1 more *d* electron and 1 less *s* electron than Pd.
- e) Ag has 1 more *d* electron and 1 more *s* electron than Pd.