CONCEPT: SELECTIVE PRECIPITATION

- A process of separating specific _____ out of a solution by using *reagents* that form a _____ with the ions.
 - □ **Reagent** is another _____ that binds to the dissolved ion and precipitates out of a solution.
 - Successful precipitation of a selected ion depends on the _____ (Ksp) of its salt.
 - When Q ____ Ksp: Precipitation is successful

□ Use this logic when asked to precipitate (separate) an ion from a mixture of ions based on differing Ksp values.

EXAMPLE: Sample of a solution contains $0.405 \text{ M CrO}_4^{2-}$ and 0.628 M S^{2-} ions. These two ions can be precipitated with the use of PbF₂. Which ion will precipitate out first and at which concentration?

 $(PbCrO_4 Ksp = 2.0 \times 10^{-16}, PbS Ksp = 7.0 \times 10^{-29}.)$

PRACTICE: Solution contains $[Cu^{2+}] = 0.035 \text{ M}$, $[Sr^{2+}] = 0.054 \text{ M}$, $[Al^{3+}] = 0.23 \text{ M}$. Cu^{2+} can be separated by selective precipitation using NaOH. What is the minimum concentration of NaOH needed to start precipitation of Cu^{2+} ? (Ksp = 2.2 x 10^{-20} of $Cu(OH)_2$).