CONCEPT: DE BROGLIE WAVELENGTH - The De Broglie Wavelength associates the wave nature of a moving object with its velocity through Planck's constant. - □ **Object**: A photon, a subatomic particle or literally anything with a velocity. | De Broglie Wavelength Formula | | | | | | |--|-----|---------------------------------------|--|--|--| | The De Broglie Wavelength Formula is used when we have the velocity and wavelength of an object. | | | | | | | | | Δ = Wavelength in meters. | | | | | | λ = | □ <u>h</u> = Planck's Constant as J∙s | | | | | | | □ <u>m</u> = mass of object in | | | | | | | □ <u>V</u> = velocity in | | | | □ Based on the formula, the wavelength of an object is _____ proportional to its mass and velocity. **EXAMPLE:** Find the wavelength of a proton with a speed of 6.25×10^5 m/s. (Mass of a proton = 1.67×10^{-27} kg) **PRACTICE:** What is the velocity (in m/s) of an electron that has a wavelength of 3.13×10^5 pm? (Mass of an electron = 9.11×10^{-31} kg). | CONCEPT: DE BROGLIE WAVELENGTH | | | | | | | |---|---------------------------|-----------------------------|-------------------|--|--|--| | PRACTICE: The faster ar | n electron is moving, the | its kinetic energy, and the | its wavelength. | | | | | a) higher, shorter | b) higher, longer | c) lower, longer | d) lower, shorter | PRACTICE: What is the speed (in m/s) of a subatomic particle that has a wavelength of 3.13 x 10 ⁵ pm? (Mass of a proton = | | | | | | | | 1.67 x 10 ⁻²⁷ kg). | PRACTICE: Consider an atom traveling at 3.00 x 10 ¹⁵ m/s. The de Broglie wavelength is found to be 7.1316 x 10 ⁻³⁹ . | | | | | | | | Determine the mass (in g) | of the atom. |