CONCEPT: DE BROGLIE WAVELENGTH

- The De Broglie Wavelength associates the wave nature of a moving object with its velocity through Planck's constant.
 - □ **Object**: A photon, a subatomic particle or literally anything with a velocity.

De Broglie Wavelength Formula					
The De Broglie Wavelength Formula is used when we have the velocity and wavelength of an object.					
		Δ = Wavelength in meters.			
	λ =	□ <u>h</u> = Planck's Constant as J∙s			
		□ <u>m</u> = mass of object in			
		□ <u>V</u> = velocity in			

□ Based on the formula, the wavelength of an object is _____ proportional to its mass and velocity.

EXAMPLE: Find the wavelength of a proton with a speed of 6.25×10^5 m/s. (Mass of a proton = 1.67×10^{-27} kg)

PRACTICE: What is the velocity (in m/s) of an electron that has a wavelength of 3.13×10^5 pm? (Mass of an electron = 9.11×10^{-31} kg).

CONCEPT: DE BROGLIE WAVELENGTH						
PRACTICE: The faster ar	n electron is moving, the	its kinetic energy, and the	its wavelength.			
a) higher, shorter	b) higher, longer	c) lower, longer	d) lower, shorter			
PRACTICE: What is the speed (in m/s) of a subatomic particle that has a wavelength of 3.13 x 10 ⁵ pm? (Mass of a proton =						
1.67 x 10 ⁻²⁷ kg).						
PRACTICE: Consider an atom traveling at 3.00 x 10 ¹⁵ m/s. The de Broglie wavelength is found to be 7.1316 x 10 ⁻³⁹ .						
Determine the mass (in g)	of the atom.					