CONCEPT: ANALYZING TRAIT VARIATION

- - \Box The formula used to calculate phenotypic variation is: $V_P = V_G + V_E$
 - Phenotypic variance = V_P
 - Genetic variance = V_G
 - Environmental variance = V_E
 - □ To determine the variation attributed to genetics you must control for ______
 - If you are looking for how much genetic variation contributes to stem height in one species of flowers then:
 - Plant multiple seeds from one species in a carefully controlled greenhouse (V_E= 0)
 - □ To determine the variation attributed to environment you must control for genetics
 - How much environmental variation contributes to stem height in one species of flowers?
 - Plant multiple genetically identical seeds in many different environmental conditions (V_G=0)

EXAMPLE:

PRACTICE:

- 1. Which of the following represent trait variation caused from genetic variation?
 - a. V_P
 - b. V_G
 - c. V_E
 - $d. \quad V_V$

- 2. If you wanted to identify what proportion of trait variation is due to the environment, you would do what?
 - a. Control for environmental variation
 - b. Control for overall variation
 - c. Control for genetic variation
 - d. Control of phenotypic variation

- 3. If you wanted to identify what proportion of trait variation is due to genetics, you would do what?

 a. Control for environmental variation

 - b. Control for overall variation
 - c. Control for genetic variation
 - d. Control of phenotypic variation