CONCEPT: ANALYZING TRAIT VARIATION - - \Box The formula used to calculate phenotypic variation is: $V_P = V_G + V_E$ - Phenotypic variance = V_P - Genetic variance = V_G - Environmental variance = V_E - □ To determine the variation attributed to genetics you must control for ______ - If you are looking for how much genetic variation contributes to stem height in one species of flowers then: - Plant multiple seeds from one species in a carefully controlled greenhouse (V_E= 0) - □ To determine the variation attributed to environment you must control for genetics - How much environmental variation contributes to stem height in one species of flowers? - Plant multiple genetically identical seeds in many different environmental conditions (V_G=0) ## **EXAMPLE:** ## PRACTICE: - 1. Which of the following represent trait variation caused from genetic variation? - a. V_P - b. V_G - c. V_E - $d. \quad V_V$ - 2. If you wanted to identify what proportion of trait variation is due to the environment, you would do what? - a. Control for environmental variation - b. Control for overall variation - c. Control for genetic variation - d. Control of phenotypic variation - 3. If you wanted to identify what proportion of trait variation is due to genetics, you would do what? a. Control for environmental variation - b. Control for overall variation - c. Control for genetic variation - d. Control of phenotypic variation