CONCEPT: TRANSPOSABLE ELEMENTS IN EUKARYOTES

- Eukaryotes have two ______ of transposable elements
 - □ Retrotransposons (class I elements) use an RNA intermediate to jump
 - Often, these comes from RNA viruses (retroviruses) that use ssRNA as their genetic material
 - Reverse transcriptase transcribes RNA into DNA
 - The **provirus** is the DNA that integrates into the genome
 - Ex: Long-terminal repeat (LTR) retrotransposons have long repeats on each end
 - Use "copy and paste" method to transpose
 - □ DNA transposons (class II elements) use DNA to jump

EXAMPLE:

Drosophila P Element

- Drosophila P element was one of the first eukaryotic ______ identified
 - □ The P element is a transposon that can severely disrupt the genome
 - Strains of flies with this transposon are called P strains
 - □ If you mate a male P strain with a female M strain (without P element):
 - **Hybrid dysgenesis** defines the multiple serious defects of the offspring (mutations, sterility, breakage)
 - □ If you mate a female P strain with a male M strain (without P element):
 - You get normal offspring
 - $\hfill \square$ Why? The egg in the female P strain can suppress the P element transposons

EXAMPLE:

Hybrid dysgenesis (mutated, sterile flies)

Normal Offspring

Human Transposable Elements

- Humans also contain ______ transposable elements
 - □ Short interspersed nuclear elements (SINEs) are one common class of retrotransposons
 - **Alu** is the most common SINE in humans (300,000 copies)
 - □ Long interspersed nuclear elements (LINEs) are a second common class of retrotransposons
 - **L1** is the most common LINE in humans (20,000 copies)
 - □ Although most human transposable elements do not move, some still do and can cause disease
 - When they do just most do in **safe havens**, which are non-gene regions safe for genes to jump (introns)

- Transposons have a great impact on genome evolution
 - ☐ They can cause gene mutations by inserting inside of a gene or a gene regulatory region
 - ☐ They can cause chromosomal rearrangements
 - ☐ They can relocate genes to new regions