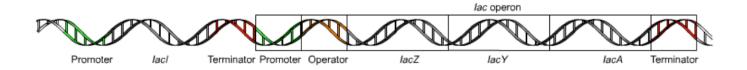
CONCEPT: LAC OPERON

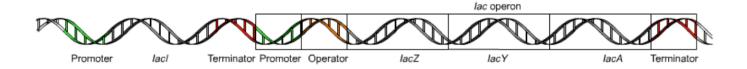
An operon is a group of genes with similar functions that are transcribed together

□ There are many ______ of an operon (PROG)


- Promoter: Region where transcription initiator binds to initiate transcription

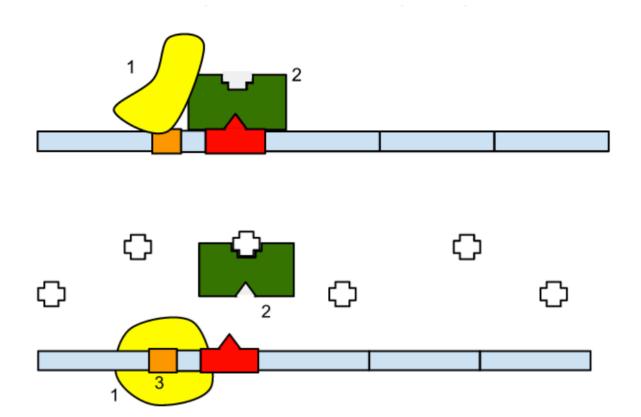
- Repressor: A protein that can repress transcription of the operon

- Operator: Region where the repressor binds. The "on/off" switch


- Genes: The genes that are transcribed together

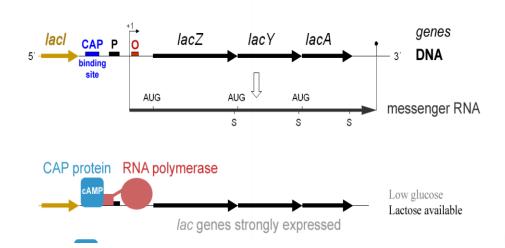
EXAMPLE:

- An *lac* operon was the first operon discovered. It was discovered by Jacob, and Monod in the 1960s
 - □ The *lac* operon encodes ______ that breakdown and process lactose
 - LacZ: Encodes beta-galactosidase which converts lactose into glucose and galactose
 - LacY: Ecodes **permease**, which allows lactose to enter into the cell
 - LacA: Encodes transacetylase, which has an unknown function but is crucial for lactose processing


EXAMPLE:

Lac operon regulation

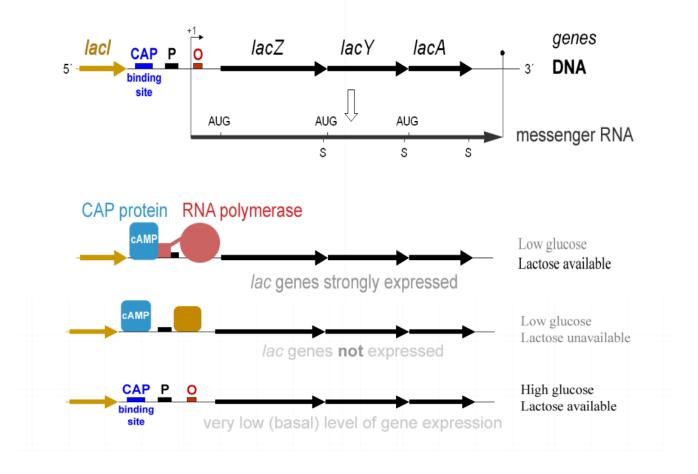
- - $\hfill \square$ When the lactose concentration is **high**:
 - Lactose binds to the repressor, causing it to be removed from the operator
 - When the repressor is removed, transcription of the operon can take place
 - The *lac* operon genes are made, and then can act to breakdown lactose
 - □ When the lactose concentration is **low**:
 - Lactose doesn't bind to the repressor, causing it to remain on the operator
 - Transcription does not take place


EXAMPLE:

- The lac operon can also respond to glucose
 - ☐ The catabolite activator protein (CAP) represses the *lac* operon when glucose is present
 - When glucose is present it inhibits activity of adenyl cyclase, which works to create cAMP
 - When the **cAMP** concentration is high it binds CAP, and when it is low it doesn't bind to CAP
 - CAP/cAMP complex binds CAP site upstream of the lac promoter and activates transcription
 - When glucose is high, it will inhibit cAMP production, and will not activate transcription
 - When glucose is low, there will be high cAMP production, which will activate transcription

EXAMPLE:

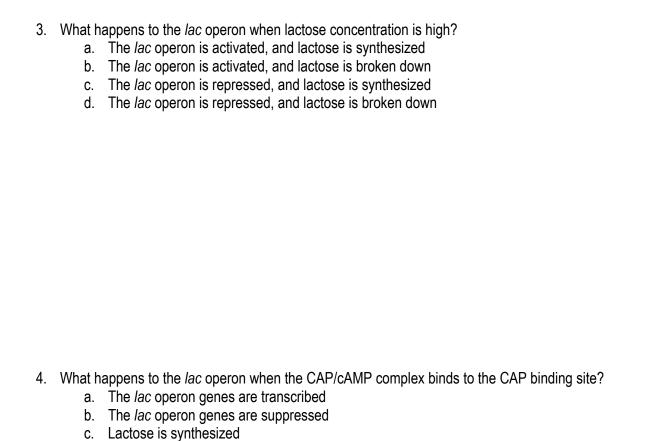
The lac Operon and its Control Elements


Summary of *lac* operon expression

- Therefore the *lac* operon has different functions depending on the ______ of glucose and lactose
 - □ If glucose and lactose are both present, the cell would prefer to utilize glucose, because it is simpler
 - But, if you only have lactose, then the cell has to break down lactose to generate glucose

Lactose	Glucose	Lac Expression
High	Low	Strongly Expressed
Low	High	Not Expressed
Low	Low	Not Expressed
High	High	Somewhat Expressed

EXAMPLE:


The lac Operon and its Control Elements

PRACTICE:

- 1. Which of the following is not a part of an operon?
 - a. Promoter
 - b. Repressor
 - c. Operator
 - d. Enhancer

- 2. The *lac* operon encodes genes that are responsible for what?
 - a. Synthesizing more lactose
 - b. Breaking down lactose
 - c. Carrying lactose to the mitochondria
 - d. Converting lactose into cellulose

- 5. True or False: Glucose concentration can regulate the *lac* operon?a. Trueb. False