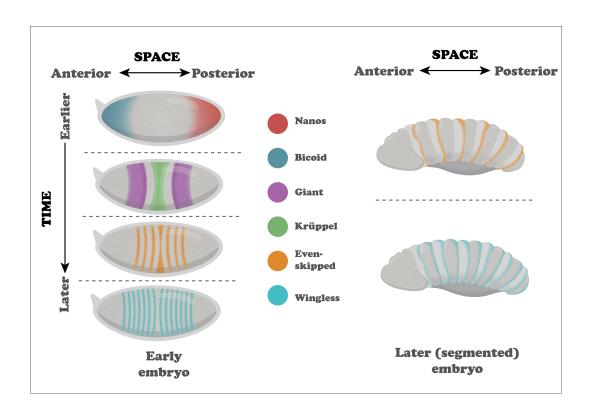
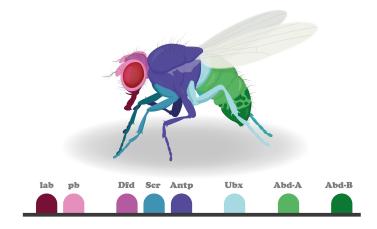

CONCEPT: DEVELOPMENTAL PATTERNING GENES

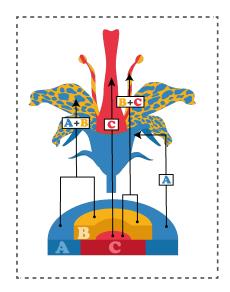

- The first _____ to development is to determine the front, back, top, and bottom of an organism
 - □ The anterior (front/head) and posterior (back) are determined first
 - ☐ The dorsal (top) and ventral (bottom) are determined second
 - □ Many different genes determine the positioning (patterning) of these locations
 - Maternal effect genes are maternal genes found within the egg. These genes are active first
 - **Zygotic genes** are the embryo's genes that control later development

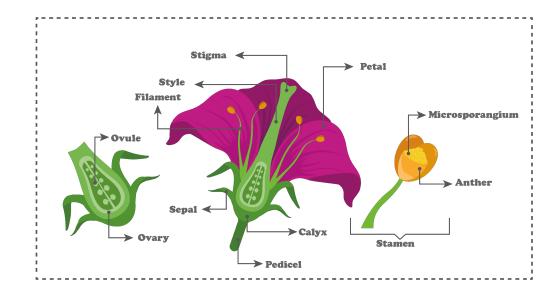
EXAMPLE:


- Segmentation genes control the development of specific of an organism
 - ☐ Maternal effect genes control development first
 - -Highter *bicoid* concentrations form anterior
 - Higher **nanos** concentrations form posterior
 - □ **Gap genes** are zygotic genes that divide the embryo into body segments (ex: *giant, krüppel*)
 - □ **Pair-rule genes** are zygotic genes that result in pairs of segments (ex: even-skipped)
 - □ Segment-polarity genes determine the anterior/posterior location in each segment (ex: wingless)
 - □ The concentration of each gene, activates the next set of genes
 - Bicoid concentration activates gap. Gap activates pair-rule, and pair-rule activates segment-polarity

EXAMPLE:

- Homeotic genes (HOX) controls organ development in each previously ______ segment
 - □ These genes contain a **homeobox** of 180bp with **homeodomain** that binds DNA (helix-turn-helix)
 - Allows for HOX genes to act as transcription factors
 - □ In *Drosophilia* there are two clusters of HOX genes
 - Antennapedia (ANT-C) has five genes which control head and anterior thorax development
 - Bithorax (BX-C) has three genes for posterior thorax and abdominal development
 - □ HOX genes are extremely well conserved
 - Some animals have more HOX gene clusters than fruit flies (ex: mice have four)

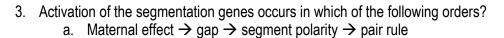

EXAMPLE:



Plant Development

- Plants contain their own ______ of homeotic genes
 - □ In *Arabidopsis* there are three classes of HOX genes called Class A,B,and C
 - Class A forms the sepals
 - Class A and B form the petals
 - Class B and C form the stamen
 - Class C form the carpels

EXAMPLE:



PRACTICE:

- 1. Which genes are the first genes that control patterning of the offspring during early development?
 - a. Anterior genes
 - b. Maternal effect genes
 - c. Zygotic genes
 - d. Dorsal genes

- 2. Areas with higher bicoid expression will develop into which body pattern?
 - a. Anterior
 - b. Posterior
 - c. Dorsal
 - d. Ventral

- b. Gap → maternal effect → pair rule → segment polarity
- c. Maternal effect → gap → pair rule → segment polarity
- d. Segment polarity → pair rule → gap → maternal effect

- 4. Which of the following HOX clusters are responsible for forming the abdominal in *Drosophila* development?
 - a. Segment polarity
 - b. Antennapedia
 - c. Bithorax
 - d. Pair rule

- 5. In *Arabidopsis*, which class of HOX genes are responsible for forming the plant carpels?

 a. Class A

 - b. Class B
 - c. Class C
 - d. Class B and C