CONCEPT: OVERVIEW OF INTERACTING GENES

- Genetics is very rarely clear cut, as many traits exist on a _____ (ex: height or weight)
 - □ **Polygenic** describes traits controlled through multiple traits
 - Often the expression is continuous (ex: height)

EXAMPLE:

Assume there are two genes (P1 and P2) that both determine a plant's color (purple).

 $P1/p1/P2/p2 \times P1/p1/P2/p2$

You get four offspring outcomes

1.	Homozygous or Heterozygous dominant for both genes	P1/-/ P2/-	2 doses	
2.	Homozygous or heterozygous dominant for gene 1	P1/-/ p2/-	1 dose	
3.	Homozygous or heterozygous dominant for gene 2	p1/-/ P2/-	1 dose	
4.	Homozygous recessive for both gene 1 and gene 2	p1/-/ p2/-	0 doses	0

- □ Multiple genes can interact, causing very different phenotypic effects
 - Pleiotropy: describes when a single gene has multiple effects on the phenotype of an organism
 - Variations of Dominance: describes multiple ways a dominant allele can effect the phenotype
 - **Epistasis:** is the interaction of two different genes and how the interaction effects the phenotype
 - **Penetrance:** is the percentage of individuals with a given allele who exhibit the phenotype
 - Expressivity: measures the degree to which a given allele is expressed at a phenotypic level

PRACTICE:

- 1. Which of the following terms describes an interaction between two genes?
 - a. Penetrance
 - b. Pleiotropy
 - c. Incomplete dominance
 - d. Epistasis

- 2. Polygenic traits are controlled through which of the following ways.
 - a. Multiple alleles for one gene
 - b. Multiple genes
 - c. Epistasis
 - d. Penetrance

- 3. True or false: Polygenic traits are usually continuous traits?a. Trueb. False