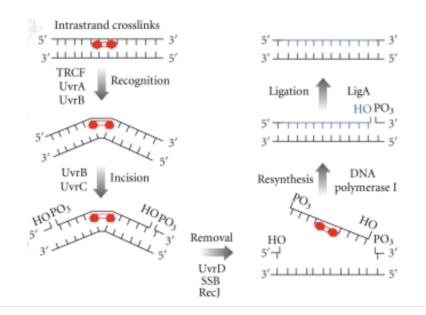
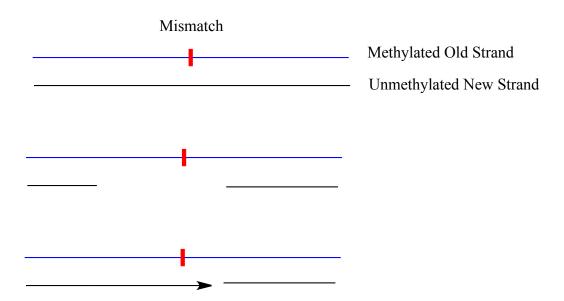

CONCEPT: DNA REPAIR

- - $\hfill\Box$ DNA polymerase proofreading quickly fixes a mispaired base
 - $\hfill \Box$ Enzymes can reverse damaged DNA
 - Many different enzymes exist to counteract damaged DNA
 - Ex: CPD photolyase is an enzyme that repairs dimers caused from UV light


Repair Pathways

- □ Base-excision repair (BER) removes and replace damaged nucleotides
 - DNA glycoslyases are enzyme that remove the damaged base from the sugar
 - A deoxyribophosphodiesterase enzyme removes a stretch of neighboring DNA
 - DNA polymerase fills the gap with complementary nucleotides
 - DNA ligase seals the new nucleotides into the backbone

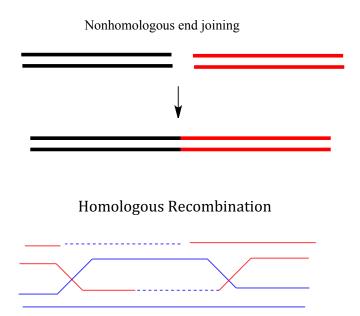


- □ Nucleotide-excision repair (NER) repairs damage that ______ the DNA helix
 - 1. Global genomic NER repairs damage anywhere in the genome
 - 2. Transcription-coupled NER repairs only transcribed regions of DNA
 - Damaged base is recognized by proteins, which recruit more proteins
 - A 30 nucleotide segment of DNA is removed from the damaged area
 - DNA polymerase fills the gap, and DNA ligase seals the new nucleotides to the backbone
 - Distortions in NER cause diseases like Xoderma pigmentosum and cockayne syndrome
 - Causes light sensitivities

EXAMPLE:

- □ **Mismatch repair** repairs damaged from insertions or deletions that occur immediately following replication
 - First, the mismatched base is recognized, and proteins are recruited to the area
 - The methylation status of the DNA strands is used to determine which is the mismatched base
 - Methylated strand = old strand, unmethylated strand = new strand
 - DNA polymerase fills the gap, and DNA ligase seals the new nucleotides to the backbone

Translesion Synthesis


- □ **Translesoin DNA synthesis** is a last resort mechanism the cell uses to prevent mutations from causing death
 - DNA damage causes DNA polymerase to ______- while replicating
 - Translesion (bypass) polymerases are recruited to the area
 - These polymerases can overcome helical distortions and continue replicating
 - But they have problems including: high error rate, no proofreading, and only add few nt at a time
 - So translesion polymerases unblock stalled replication forks to allow for replication to continue
 - They don't fix the damage that caused the stall and they can miss mutations without proofreading

EXAMPLE:

Double Strand Breaks

- Double strand breaks can be repaired in _____ ways
 - □ Nonhomologous end joining connects two broken ends together
 - Proteins recognize DNA damage
 - Other proteins are recruited which trim nucleotides off the damaged ends
 - DNA ligase connects the two broken ends
 - This type of repair occurs outside of S phase
 - □ **Homologous recombination** repairs double strand breaks directly after replication
 - Synthesis-dependent strand annealing uses sister chromatids as a template to repair the broken strands
 - Process is similar to crossing over, but uses sister chromatids instead of nonsister chromatids

PRACTICE:

- 1. Which of the following repair pathways repairs damage that causes distortions in the double helix?
 - a. Base Excision Repair
 - b. Nucleotide Excision Repair
 - c. Mismatch Repair
 - d. Homologous Recombination

- 2. Which of the following repair pathways uses a methylated strand of DNA to correct DNA damage?
 - a. Base Excision Repair
 - b. Nucleotide Excision Repair
 - c. Mismatch Repair
 - d. Homologous Recombination

3.	True or False: Translesion DNA synthesis is the first mechanism the cell uses to repair DNA damage? a. True b. False
4.	Which of the following pathways is an error-free way to repair double-stranded breaks? a. Homologous recombination b. Non-homologous end joining c. Translesion synthesis d. Mismatch repair