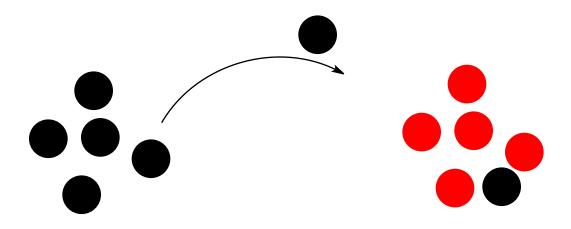

CONCEPT: ALLELIC FREQUENCY CHANGES

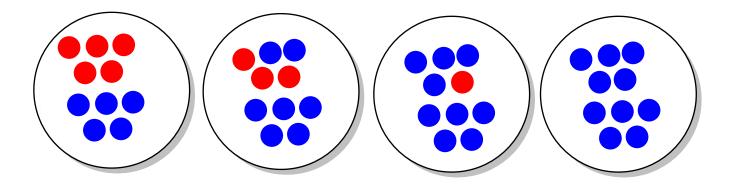
In real-life genetics, the SAMIR assumptions of Hardy-Weinberg are too

Selection

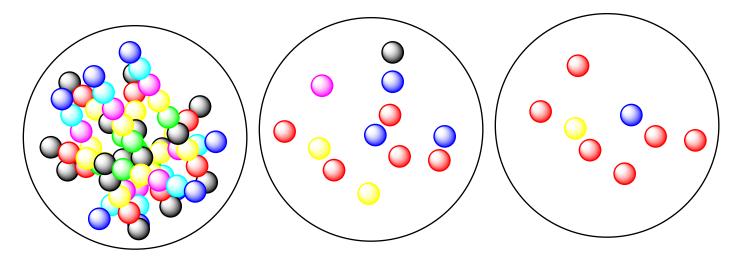

- 1. **Natural selection** is when organisms with genes that better allow them to survive produce more offspring
 - □The struggle for survival means that not everyone _____
 - Individuals with particular phenotypes will be more apt to survive and pass on their genes
 - ☐ There are multiple types of selection
 - Directional selection moves alleles in one direction until they're fixed in the population or lost
 - **Fixed** alleles are found in every organism in the population
 - Positive selection brigs favorable mutations to a higher frequency
 - Purifying selection removes harmful mutations
 - Balancing selection moves population to an equilibrium where both alleles are maintained in population

- □ **Fitness** is a measurement of how well an individual's genetic makeup contributed to _____ generations
 - Absolute fitness is the number of offspring an individual has
 - **Relative fitness** is the fitness of an individual relative to another individual

New Alleles and Migration


- 2. Allelic frequencies are changed by the creation or introduction of ______ alleles
 - □ Mutation is one major way new alleles are created in a population
 - **Mutation rate** (μ) is the rate at which mutations occur in a population
 - Can be used to calculate how frequently new alleles will arise
 - Formula: $\Delta q = \mu p$ calculates how the mutation rate on allele p causes a change in q freq.
- 3. Migration (gene flow) is the movement of individuals between _____
 - □ Creates a **genetic admixture** which is a mix of genes in individuals that arose from 1+ subpopulations
 - Migration adds genetic variation to the population

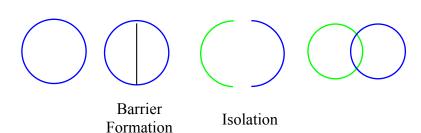
Genetic Drift and Non-Infinite Populations


- 4. Populations are not infinite, which means gametes only contain a sample of alleles present in the parental gene pool
 - □ Purely by chance, not all alleles will be passed onto the next ______
 - But, the more offspring that are produced, the more alleles will be passed on
 - □ If the gametic sample is small (so small number of gametes are used to produce offspring),
 - Then, the greater the change that the gametes composition will deviate from the entire gene pool
 - Sampling error is a deviation from expected ratio due to limited sample size
 - □ **Genetic drift** is a change in allelic frequency due to a random disappearance of genes in small populations
 - Higher in small populations, and when allelic frequencies are equal

EXAMPLE: Genetic drift over four generations

- □ Genetic drift can lead to fixation or loss of an
 - **Fixation** occurs when all individuals in a population are homozygous for one allele
 - Loss is when no individual in a population carries the allele
- ☐ Genetic drift can also be caused by two major occurrences in a population
 - Founder effect occurs when a new population of a much smaller size is formed by a founder
 - The founder doesn't carry every allele at the same frequency as the original population
 - Bottleneck occurs when there is a contraction in population size which reduces the variation of alleles
 - Can occur in one or over several generations

EXAMPLE: Example of bottleneck effect


Non-random Mating

- 5. Non-random mating due to ______ occurs in every organism on Earth
 - □ **Assortative mating** occurs when individuals choose mates based phenotypes
 - Positive assortative mating occurs when mates are chosen based on similar phenotypes
 - Negative assortative mating occurs when mates are chosen based on dissimilar phenotypes

EXAMPLE: Female humans prefer the odor of males with different MHC alleles than their own

- □ Isolation by distance can also cause non-random _____
 - Two populations of the same species separated by large distances likely wont mate
 - Therefore genetic variations begin to develop between the populations
 - **Speciation**, which is the creation of a new species, can occur
 - Usually occurs upon reproductive isolation
 - Prezygotic isolation are biological barriers that reduce breeding between populations
 - Postzygotic isolation is due to infertility or inviability of hybrids created via interbreeding

□ Inbreeding,	which is	the mating	between	relatives.	also is a	result of non	-random	mating
□ morecamy,	***************************************	aro maarig	DOLWOOII	I CIGUI V CC;	aloo lo c	i i oodii oi iioii	Idiidoiii	mating

- Inbred individuals are much more likely to be homozygous for ______ recessive alleles
 - Inbreeding depression can lead to reduction in vigor and reproduction success
 - In plants, inbreeding through self-fertilization can often be positive
- Inbreeding coefficient (F) is the probability that 2 alleles in an individual trace back to the same ancestor
- Inbreeding is more common among small populations

Relationship	Inbreeding Coefficient (F)				
Father/Daughter	25%				
Grandfather/Granddaughter	12.5%				
Uncle/Niece	12.5				
First Cousins	6.25%				
Second Cousins	1.56				