CONCEPT: ORGANELLE DNA

- Mitochondria and chloroplasts both contain their own DNA (mtDNA and cpDNA)
 - □ Cells are classified based on the ______ of DNA sources they contains
 - Heteroplasmic cells contain DNA in the nucleus, and from organelle sources
 - Homoplasmic cells contains only DNA from one source
 - ☐ The **endosymbiont theory** explains how mitochondria and chloroplasts evolved with eukaryotic cells
 - It states that the mito and chloro were free-living bacteria, that were engulfed by early eukaryotic cells
 - □ Mutations in the organelle DNA can cause serious defects
 - Myoclonic epilepsy and ragged-red fiber disease (MERRF) causes deafness, seizures, and other issues

EXAMPLE: Endosymbiont Theory

- ☐ The DNA found in these organelles is small, and ______
 - It generally contains few noncoding regions, and no introns
- ☐ Human mitochondrial DNA has certain properties
 - It has a **heavy chain**, which has more guanines
 - It also has a **light chain**, which has more cytosines
- □ The codon code is not universal in mitochondria and chloroplasts
 - Ex: AGA codes for arginine normally, but in *Drosophilia* mitochondrial DNA it codes for serine

Inheritance

- Inheritance of organelle DNA is different than ______ DNA
 - □ **Uniparental inheritance** is when progeny inherit DNA solely from one parent
 - Mitochondrial DNA is inheritance maternally

EXAMPLE:

- □ **Cytoplasmic segregation** is when two organelles apportion themselves into different daughter cells
 - Ex: Variegation in plants, slow growing "poky" Neurospora fungi
 - In rare cases, an affected female will produce a healthy offspring

EXAMPLE: Variegation due to cytoplasmic segregation of chloroplasts in plants

