CONCEPT: CHI-SQUARE TEST FOR LINKAGE

- A chi-square test can be used to identify the likelihood of gene linkage
 - □ **Chi-square test** is used to evaluate if your experimental values are different from the predicted values

$$\chi^2 = \Sigma \frac{(o-e)^2}{e}$$

EXAMPLE:

I want to know if genes A and B are linked, so I do an experiment where I cross two heterozygous organisms. I get 50 offspring, 31 parental types, and 19 recombinant types. Is it likely that A and B are linked?

- 1. What are the expected numbers?
 - If two genes are not linked then the recombination frequency is 50%. Therefore, there would be 50% parental types and 50% recombinant types. So out of 50 offspring, 50/2 = 25. There would be 25 parental and 25 recombinants.
- 2. Calculate the chi-square value

Phenotype	Observed	Expected	(o-e) ² /e			
Parental	31	25	1.44			
Recombinant	19	25	1.44			
		Total	2.88			

- 3. Determine the P value.
 - a. Calculate degrees of freedom. DF=1
 - b. Find chi-square value on row 1. It is between 2.71 and 3.84
 - c. The appropriate p value is between 0.10 and 0.05 (10% to 5%)

Degrees of freedom (df)	x² value										
	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

- 4. Do we accept or reject the null hypothesis?
 - a. The null hypothesis states that the expected and observed values are not different. (This would mean that the genes would NOT be linked)
 - b. Because the p values are greater than 0.05 (5%), so we accept the null hypothesis.
- 5. Therefore, we can say with 95% confidence the genes are NOT linked.
 - a. Remember: This does not confirm linkage, it just states the likelihood

PRACTICE:

Black(B) rabbit coat colors are dominant to white(b) coat colors. Long hair (H) is dominant to short hair (h). A breeder crosses a rabbit homozygous for white, short hair with a black rabbit with long hair. The F₁ is backcrossed to the rabbit with white, short hair and the following progeny are produced. Use the chi-square test to answer the following questions.

Phenotype	Offspring				
Black, Long	40				
Black, Short	20				
White, Long	24				
White, Short	62				
Total	146				

- 1. What are the expected offspring numbers if the two genes are not linked, and therefore assort independently?
 - a. 73 parental, 73 recombinant
 - b. 146 parental, 0 recombinant
 - c. 60 parental, 86 recombinant
 - d. 102 parental, 44 recombinant

- 2. Calculate the chi-square value for the above problem.
 - a. 23.00
 - b. 5.89
 - c. 0.02
 - d. 0.467

- 3. In this example, how many degrees of freedom should be used?
 - a. 1
 - b. 2
 - c. 3
 - d. 4

- 4. Using the appropriate chi-square value and degrees of freedom, do the coat color and hair length genes assort independently?
 - a. Yes, both genes assort independently
 - b. No, both genes do not assort independently (meaning they are linked)

Degrees of freedom (df)	x² value										
	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001