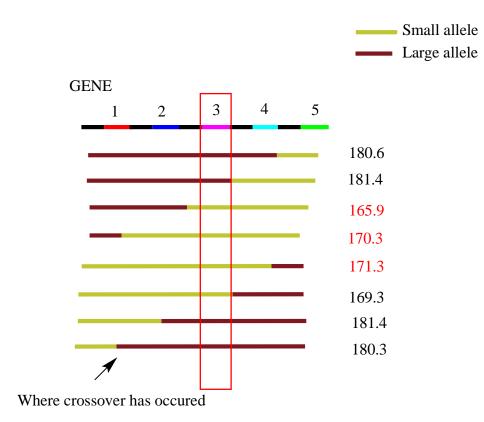
CONCEPT: QTL MAPPING

• Quantitative trait loci (QTL) are locations of genes that control variation in complex (quantitative)					
□ Quantitative traits are any traits that can be measured (usually continuous)					
□ QTL Mapping is the method for determining QTLs in the genome					
□ The method of QTL is as follows:					
1. Mate two inbred lines with different traits (Ex: Tomato weight of 230g x tomato weight of 10g)					
- Produces intermediate F ₁ generation					
2. Backcross F ₁ to the large tomato parents (230g)					
- Produces back-cross 1 generation (BC ₁)					
3. Take DNA samples and determine genotype of BC₁ and Parental strains					

- 4. Calculate weight for each BC₁ tomato
 - Calculate mean for all BC tomatoes

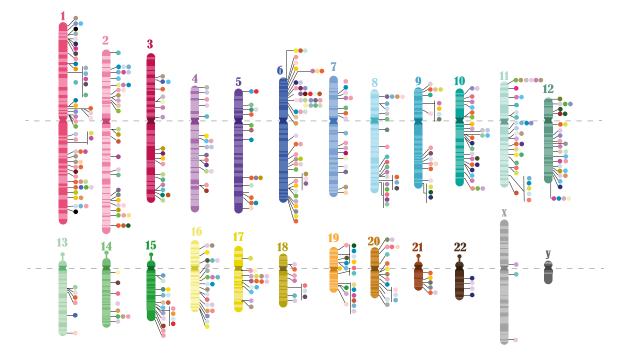
- Divide the genome into SNP markers


- Calculate mean for all BC tomatoes with the same markers
- 5. Determine if QTL is affecting fruit weight
 - If no QTL is affecting fruit weight then the overall mean will equal the "marker mean"
 - If QTL is affecting fruit weight then overall mean will not equal the "marker mean"
- 6. Use **lod scores** to statistically confirm your hypothesis

EXAMPLE: Example data from QTL Mapping

Plant	Fruit Weight	Marker 1	Marker 2	Marker 3	Marker 4
Overall mean weight	176.3	-	-	-	-
Weight of L/L		176.5	178.6	182.1	175.9
Weight of L/S		174.5	173.4	168.4	172.3

- - □ There can be 100+ genes in between two genomic markers used for sequencing
 - □ Fine-mapping is the method used to determine the gene from the QTL
 - □ Use congenic stocks (nearly-isogenic): are identical, but contain crossovers near QTLs


EXAMPLE:

QTL Mapping in Random-Mating Populations

- Association mapping can identify QTLs in genomes based on linkage disequilibrium between marker and QTL
 - □ **Linkage disequilibrium** is the nonrandom association of alleles at two loci (so alleles are not independent)
 - □ This method can be done in ______, as it tests many alleles at once & does not need crosses
 - It also does not require fine-mapping as it directly identifies the responsible gene at the QTL
 - ☐ The method of mapping using **genome-wide association studies** is as follows:
 - 1. Sequence genome of 2000 individuals with a disease and 2000 without a disease
 - Identify all SNPs in the genomes (HUGE amount of data)
 - 2. Statisticians determine if one SNP is more frequently associated with disease than other

EXAMPLE:

