CONCEPT: TYPES OF MUTATIONS

- - ☐ The first way to classify mutations is to describe how they arise
 - Spontaneous mutations are changes that randomly occur
 - Induced mutations are changes caused via natural or artificial agents (ex: radiation, chemicals, etc...)
 - □ A second way to classify mutations is by where the mutation occurs
 - Somatic cell mutations occur in somatic cells
 - Germ cell mutations occur in germ cells
 - Germ cell mutations are passed onto offspring

- □ A **point mutation** is a mutation that affects only a _____ nucleotide
 - Base substitutions changes on base for another
 - **Transitions** replaces the base with one from a similar category (ex: purine to purine)
 - Transversions replaces the base from a different category (ex: purine to pyrimidine)
 - Base insertions add extra bases, and base deletions remove bases
 - An indel mutation is when both an insertion and a deletion occur
 - These can easily effect codons

EXAMPLE:

- □ A third way to classify mutations is their effect on _____
 - Synonymous (silent) mutations change a codon to another codon that codes for the same amino acid
 - Missense mutations change a codon to another codon that codes for a different amino acid
 - Conservative changes one codon to another chemically similar amino acid
 - Nonconservative changes one codon to another chemically different amino acid
 - Nonsense mutations change a codon to a stop codon
 - Frameshift mutations alter the codon reading frame

	NO mutation	Point mutations			
		011	Nonsense	Missense	
	mutation	Silent		Conservative	non- conservative
		 	₩	 	V
DNA level	TTC	TTT	ATC	TCC	TGC
mRNA level	AAG	AAA	UAG	AGG	ACG
Protein level	Lys	Lys	STOP	Arg	Thr
	Ž.		0		*

Base Distortions

- Base distortions disturbe the ______ structure of the bases
 - □ Bases can lose part of their structure
 - Apurinic sites are regions that have lost their purines
 - **Depurination** is the loss of the purine
 - Apyrmidinic sites are regions that have lost their pyrimidines
 - □ **Deamination** is the removal of an amino group from a base or molecule
 - This process can change cytosine to uracil and adenine to hypoxanthine
 - □ Oxidative damage occurs when reactive oxygen species affect the _____
 - O₂-, H₂O₂, and OH target the DNA and chemically alter the bases

EXAMPLE: Deamination of cytosine to uracil

Mutations and Phenotypes

- □ A fourth way to classify mutations is by their effect on the protein's _____ or organism phenotype
 - Loss of function and gain of function mutants refer to the activity of the mutated gene
 - Null mutations describe mutations that result in a complete loss of function
 - Visible mutations alter the physical phenotype of the organism
 - Nutritional mutations cause loss of an ability to synthesize an amino acid or vitamins
 - **Behavioral mutations** cause changes in behavioral
 - Conditional mutations are only detectable under certain conditions
 - Ex: temperature sensitive mutants
 - **Lethal mutations** cause death of the organism
 - **Neutral mutations** have no observable affect on the organism

- □ A fifth way to classify mutations is by their effect on individual _____
 - Hypomorphic mutation is a loss of function mutation that produces a tiny amount of functional protein
 - Haploinsufficiency describes when one WT allele doesn't provide enough gene product
 - Other allele has been mutated to null or a loss-of-function
 - **Dominant-negative** describes when a mutant allele blocks the protein production produced by WT allele
 - Hypermorphic mutations is a gain of function mutation that produces a more efficient protein than WT
 - **Neomorephic mutations** generate a novel phenotype

- □ A sixth way to classify mutations is by their ______- activity
 - **Suppressor mutations** are genetic changes that suppress the effect of another mutation
 - Intragenic are mutations found in the same gene as the mutation being suppressed
 - Intergenic are mutations found in a separate gene than the mutation being suppressed