CONCEPT: HERITABILITY

- Heritability is the proportion of variation in a population that's due to genetic factors
 - □ It is a very _____ measurement that is only true for a certain population in a certain environment
 - It measures from 0 to 1, and the larger the value, the more variation is explained by genetic differences
 - Ex: h=0.65 means 65% of the overall population variation is explained by genetic differences in individuals
 - □ **Broad-sense heritability** measures the contribution of genotypic variance to total phenotypic variance
 - $H^2 = V_G/V_P$
 - A H² close to 1 = environmental conditions had little impact on variation
 - A H² close to 0 = environmental conditions had a major impact on variation

EXAMPLE: Calculate broad sense heritability for each trait

Trait	V P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	17.9	5.12

- □ Narrow-sense heritability measures the proportion of phenotypic variation due to additive genotypic variance

 Additive variation (V_A) is genetic variance caused by average differences between allelic characteristics
 - Dominant and recessive alleles have different characteristics
 - **Dominance variance (V**_D) is gene variance from heterozygotes not being intermediates of homozygotes
 - Heterozygotes are different than an intermediate between dominant and recessive homozygotes

-The _				to know are:
				-
	_			

- $h_2 = V_A/V_P$

 $-V_G = V_A + V_D$

EXAMPLE: Calculate narrow-sense heritability for each trait

Trait	V _P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	21.7	5.12

Artificial Selection

- Artificial selection is the process of choosing specific individuals for phenotypic breeding purposes
 - □ Breeders use narrow-sense heritability to predict the impact of _____
 - The higher the h₂ value the more likely the breeder will observe a change in offspring
 - \Box h₂ = R/S
 - R = Mean of the offspring overall mean called **selection response**
 - S = Mean of the parents overall mean called **selection differential**

EXAMPLE: Which of the following traits will respond best to selection by a breeder?

Trait	V _P	V _G	VA
Body Fat	40.5	16.9	7.66
Body Length	43.6	21.7	5.12

Twin Studies

 Humans cannot be bred to determine heritability, so 	_ studies are used
□ Monozygotic twins arise from a single zygote that mitotically divide	es and splits into two cells
- Have same genetics, and therefore only exhibit environment	al variation
- But some genetic changes can occur in early development (Ex: copy-number variations
□ Dizygotic twins are from two separate fertilization events	
- Are genetically as close as any other sibling set, but often s	share similar environment
□ Twin expression of a trait can be classified in two ways	
- Concordant is when both or neither twins express a trait	

- Discordant is when one twin expresses a trait but not the other

PRACTICE:

- 1. A chicken breeder has a population of chickens where the average number of eggs laid per hen per month is 34. The narrow-sense heritability is 0.75. With this information is it likely that a breeder could select for an increase in eggs per hen laid each month?
 - a. No, breeders never know whether they can select for a trait
 - b. No, the breeder will need to know the broad-sense heritability to determine whether selection could cause an increase in eggs?
 - c. Yes, because the narrow-sense heritability is 0.75, this means selection is likely to occur

- 2. The narrow-sense heritability of the number of seeds per flower is 0.9. The mean of the population is 6.0 seeds per flower. A flower breeder crosses one flower with 7 seeds to another plant with 9 seeds. What is the expected number of seeds per flower in the offspring of this cross?

 - b. 6
 - c. 7
 - d. 8

- 3. Heritability calculations were calculated for a variety of different traits. Which of the following traits would respond best to selection?
 - a. $H_2 = 0.8$, $h_2 = 0.3$
 - b. $H_2 = 0.3$, $h_2 = 0.3$
 - c. $H_2 = 0.9$, $h_2 = 0.8$
 - d. $H_2 = 0.5$, $h_2 = 0.9$