CONCEPT: TRI-HYBRID CROSS FOR MAPPING

A	tri-hybrid cross,	, is a mating to loo	k at the inheritance of	f traits	in the offspring

EXAMPLE:

In a cross of fruit flies, there are three traits of interest.

$$\textbf{P} : \hspace{1cm} v + / v + \cdot c v / c v \cdot c t / c t \hspace{1cm} x \hspace{1cm} v / v \cdot c v + / c v + \cdot c t + / c t + \\$$

Gametes:
$$v + \cdot cv \cdot ct$$
 $v \cdot cv + \cdot ct + ct + ct + ct$

$$\mathbf{F}_1$$
 trihybrid $\mathbf{v}+\mathbf{v}\cdot\mathbf{c}\mathbf{v}/\mathbf{c}\mathbf{v}+\mathbf{c}\mathbf{t}/\mathbf{c}\mathbf{t}+\mathbf{v}$

F₁ test cross
$$v+/v \cdot cv/cv+ \cdot ct/ct+ x v/v \cdot cv/cv \cdot ct/ct$$

Gametes	Phenotypes	Offspring #	Recomb. v and cv	Recomb v and ct	Recomb cv and ct
v · cv+ · ct+	Parental	580			
v+ · cv · ct	Parental	592			
v · cv · ct+	Recombinant	45			
v+ · cv+ · ct	Recombinant	40			
v · cv · ct	Recombinant	89			
v+· cv+· ct+	Recombinant	94			
v · cv+· ct	Recombinant	3			
v+· cv · ct+	Recombinant	5			
	Total	1448	268	191	93

Now, you determine the recombination frequencies:

1. For v and cv: RF = 268/1448 = 18.5

2. For v and ct: RF = 191/1448 = 13.2

3. For cv and ct: RF = 93/1448 = 6.4

What can we determine from these ______ frequencies?

- 1. All three genes are linked, because their RFs are less than 50%
- 2. The orientation and distances of the gene loci

- \Box Why does 13.2 + 6.4 = 19.6 and not the 18.5 (RF for v and cv)?
 - We should have counted the double cross overs twice, instead of once!

$$\frac{v+}{v}$$
 $\frac{ct}{cv}$

Gametes	Phenotypes	Offspring #	Recomb. v and cv
v · ct+ · cv+	Parental	580	
v+ · ct · cv	Parental	592	
v · ct+ · cv	Recombinant	45	R
v+ · ct · cv+	Recombinant	40	R
v · ct · cv	Recombinant	89	R
v+ · ct+ · cv+	Recombinant	94	R
v · ct · cv+	Recombinant	3	R x2
v+· ct+· cv	Recombinant	5	R x2
	Total	1448	284

PRACTICE

- 1. The following table shows data from a cross (ABC x abc) examining three genes (a, b, and c). Calculate the recombination frequency for A and B
- a. 20%
- b. 32%
- c. 37%
- d. 9.8%

Genotype	Offspring	A C	AB	ВС
ABC	320			
abc	276			
аВС	145			
Abc	152			
AbC	43			
аВс	34			
ABc	9			
abC	12			

- 2. The following table shows data from a cross examining three genes (a, b, and c). Calculate the recombination frequency for A and C
- a. 32%
- b. 37%
- c. 20%
- d. 9.8%

Genotype	Offspring	A C	ΑB	ВС
ABC	320			
abc	276			
аВС	145			
Abc	152			
AbC	43			
аВс	34			
ABc	9			
abC	12			

- 3. The following table shows data from a cross examining three genes (a, b, and c). Calculate the recombination frequency for B and C
- a. 20%
- b. 32%
- c. 37%
- d. 9.8%

Genotype	Offspring	A C	AB	ВС
ABC	320			
abc	276			
аВС	145			
Abc	152			
AbC	43			
аВс	34			
ABc	9			
a b C	12			

- 4. The following table shows data from a cross examining three genes (a, b, and c). Determine the order of genes
 - a. ABC
 - b. BCA
 - c. CAB

Genotype	Offspring	A C	AΒ	ВС
ABC	320			
abc	276			
аВС	145			
Abc	152			
AbC	43			
аВс	34			
ABc	9			
abC	12			