CONCEPT: OVERVIEW OF CANCER

- Cancer is a disease that arises due to _____ cell growth and division
 - □ Unregulated **proliferation**, which is cell growth and division, causes cancer
 - Unregulated apoptosis (programmed cell death) also causes cancer
 - ☐ Multiple mutations within somatic cells leads to cancer
 - □ Cancers are genetically unstable, with a variety of mutations and chromosomal aberrations
 - ☐ There are two types of tumors
 - Benign tumors have abnormal proliferation, but remain in a single area
 - Malignant tumors metastasize to other areas of the body

EXAMPLE:

- □ **Tumorigenesis** is the development of a malignant _____
 - Requires more than one mutation
 - Affects signal transduction pathways which are regulation protein networks that control cell activities
- □ Cancer is **clonal** meaning that it derives from a single cell
 - Genetic aberrations are passed onto progeny cells
 - Cancer **stem cells** exist for some cancers, which proliferate and create more tumor cells
 - Stem cells have the ability to self-renew and produce more of themselves

EXAMPLE:

Causes of Cancer

- - 1. Viruses can introduce mutations or aberrant genes that activate cancer causing genes
 - Human papillomavirus E6 and E7 proteins can lead to cancer
 - 2. Epigenetic changes to the chromatin histone proteins can cause gene misregulation
 - Cause over-activation or under-activation of important regulatory genes
 - 3. Environmental substances can lead to mutations (Ex: cigarette smoke)

- Misregulation of the cell cycle is one way these mutations can ______ in a single cell
 - ☐ The cell cycle has uses **cylins** and **cyclin-dependent kinases** to regulate the cell cycle
 - These proteins control passage through cell cycle *checkpoints*
 - □ Important cell cycle checkpoints include:
 - G₁ to S transition which is partially controlled through *retinoblastoma*
 - This checkpoint ensures DNA damage is repaired before replication
 - G₂ to M transition is controlled through CDC2 cyclin dependent kinase and cyclinB
 - This checkpoint ensures DNA replication has gone correctly

EXAMPLE:

