CONCEPT: TRYPTOPHAN OPERON AND ATTENUATION

- The **Trp operon** encodes genes that synthesize and process the amino acid tryptophan
 - □ The *trp* operon is regulated by tryptophan in _____- ways: a repressor and attenuation
 - Cytoplasmic tryptophan acts as a **corepressor** when regulating the *trp* operon
 - Tryptophan binds to a repressor, which then binds to the operator and represses transcription

EXAMPLE:

Attenuation

- Attenuation describes the process that uses tRNA^{trp} levels to ______ the *trp* operon
 - □ When tryptophan levels are high, attenuation turns off the *trp* operon
 - □ The trp operon has a leader sequence of 100+ nucleotides prior to the start site but after the promoter
 - The leader sequence can form different types of secondary structures by combining 4 small sequences
 - These sequences are called regions 1, 2, 3, and 4
 - ☐ A **terminator** structure forms when 1 and 2 form a loop and 3 and 4 form a loop
 - Terminates transcription
 - ☐ An anti-terminator structure forms when 2 and 3 form a loop
 - Allows transcription to continue

EXAMPLE:

- □ The leader sequence can also be used to control translation because it contains many tryptophan _____
 - If tryptophan levels are **low**, there will be very little tRNA^{trp} and therefore translation stalls
 - When translation stalls, 2 and 3 forms a loop forming an anti-termination sequence
 - Anti-termination sequence promotes transcription
 - If tryptophan levels are **high**, there will be enough tRNA^{trp} and translation continues
 - Translation continues until it reaches a stop codon at the end of region 1
 - Then region 3 forms a loop with 4 and acts as a termination sequence stopping transcription

EXAMPLE:

High Tryptophan Ribosome Continues

TRAP Regulation of trp Operon

- Occasionally, other organisms have evolved ______ ways of regulating the *trp* operon
 - □ B. subtilis uses the Trp RNA-Binding Attenuation Protein (TRAP)
 - TRAP binds to multiple tryptophan molecules
 - When tryptophan concentration is high TRAP is saturated, and binds to the leader sequence
 - This forms the terminator configuration and prevents transcription
 - A second protein anti-TRAP binds to TRAP when tryptophan is low
 - This allows fort he formation of the anti-terminator configuration and promotes transcription
 - The TRAP/anti-TRAP regulatory method is sensitivite to a wide variety of tryptophan concentrations

EXAMPLE:

Tryptophan Concentration: High

Tryptophan Concentration: Low

TRAP/anti-TRAP

PRACTICE:

- 1. Tryptophan regulates the *trp* operon by doing what?
 - a. Activating the operon and synthesizing more tryptophan
 - b. Activating the operon and breaking down tryptophan
 - c. Repressing the operon and inhibiting further tryptophan synthesis
 - d. Repressing the operon and inhibiting breakdown of tryptophan

- 2. Attenuation uses what molecule to regulate the trp operon?
 - a. All tRNAs
 - b. Tryptophan
 - c. Lactose
 - d. tRNA^{trp}

- 4. If tryptophan levels are low, attenuation does what to the *trp* operon?
 - a. Translation stalls, forming anti-termination sequence which promotes transcription
 - b. Translation is activated and promotes tryptophan creation
 - c. Transcription is inhibited
 - d. A termination structure is formed blocking translation