CONCEPT: EPIGENETICS, CHROMATIN MODIFICATIONS, AND REGULATION

- Eukaryotic DNA packaging can ______ gene expression
 - ☐ There are two forms of **chromatin** (DNA and Proteins)
 - Euchromatin is loosely packaged DNA, which contains genes being expressed
 - Heterochromatin is tightly packaged DNA, which contains non-expressed DNA

EXAMPLE:

- There are ______- types of chromatin modifications that affect gene expression
 - 1. **Chromatin re-modeling** is the process of moving *nucleosomes* to new DNA sequences
 - Promoters wrapped in a nucleosome will be less accessible for transcription initiation
 - SWI-SNF complex is a protein complex that repositions nucleosomes

EXAMPLE:

Histone protein modifications

- 2. **Histone protein modifications** can affect how ______ DNA is packaged in chromatin
 - Histone proteins have protein tails with lysines and arginines
 - These amino acids can be modified through **methyl** or **acetyl** groups
- □ **Acetylation** is the process of adding acetyl groups onto the histone tails
 - Addition of acetyl group results in open chromatin that promotes transcription
 - Acetylation is reversible, and histone deacetylase (HDAC) removes acetyl groups
- □ **Methylation** is the process of adding methyl groups onto the histone tails
 - Methyl groups often cause closed chromatin, but can occasionally support open chromatin
 - Methylation creates binding sites for additional proteins with activate/suppress transcription
- ☐ The **histone code** is the combination of histone modifications that affect gene _____
 - There are 150+ histone modifications, and the pattern of activation/suppression is not understood
- □ **CpG** islands are regions of unmethylated CG dinucleotides
 - Most CG dinucleotides are methylated
 - Unmethylated CpG islands are often found in promoter regions

EXAMPLE:

- 3. **Histone variants** are slightly altered histone proteins which can effect gene expression
 - Histone variants are rare, but often found in unique chromosomal regions
 - Centromeres contain their own histone H3 protein variant

Other Chromatin Regulatory Mechanisms

- Eukaryotic DNA packaging can cause entire ______ effects
 - □ **X-inactivation** is the process of creating an entirely inactivated X chromosome (*barr body*)
 - X-inactivation is created via heterochromatin
 - □ **Genetic imprinting** is when one copy (either paternal or maternal) of a chromosome is inherited as inactive
 - Genes are expressed as if there is only one allele (from the other parent)

EXAMPLE:

PRACTICE:

- 1. Chromosomal regions that form heterochromatin contain:
 - a. Highly expressed genes
 - b. Associations with the nucleolus
 - c. Few genes
 - d. Lots of open chromatin

- 2. Which of the following are examples of epigenetic marks?
 - a. Acetylated guanines in DNA
 - b. Methylated nucleotides in histone tails
 - c. Methylated amino acids in histone tails
 - d. All of the above

- 3. CpG islands are defined as which of the following?
 a. Highly methlayed CG dinucleotides

 - b. Groups of unmethylated CG dinucleotides
 - c. Methylated CG dinucleotides found in gene coding regions
 - d. CG nucleotides that become methylated to activate the gene

- 4. Which of the following terms is associated with closed chromatin?
 - a. CpG islands
 - b. Heterochromatin
 - c. Methylation
 - d. Euchromatin