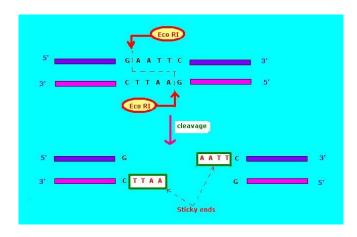
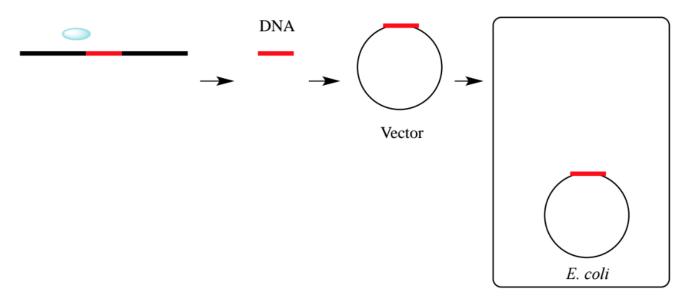

CONCEPT: GENETIC CLONING


- The ability to _____ genes is the basis for all modern genetic advancements
 - 1. Amplifying the DNA of interest to obtain many copies
 - Polymerase Chain Reaction (PCR) is the main method used to amplify DNA
 - Heat the DNA strands to a high temperature to separate the double helix
 - Lower the temperature to **anneal** primers to the DNA sequence of interest
 - Raise the temperature to allow the polymerase to find the primers and replicate the DNA
 - Can be used to create and amplify cDNA from RNA

EXAMPLE:

- Cutting the DNA of interest into small ______
 - Restriction enzymes are proteins used to chop DNA at specific sequences
 - Can create **blunt ends** with no sequence overhangs or **stick ends** with sequence overhangs


EXAMPLE:

- 3. Pasting the DNA into a ______ (called **recombinant DNA**)
 - DNA ligase is the enzyme that seals the DNA of interest into a plasmid
 - Restriction enzymes create sticky ends that are overhangs to which the seal is made
 - A **vector** is a bacterial plasmid in which the DNA sequence of interest is placed
 - For large DNA inserts, **BACs** or **YACs** are used (bacterial or yeast artificial chromosomes)
 - T_i plasmids are often used for plant cells

EXAMPLE:

Restriction Enzyme

- 4. The recombinant DNA is then placed in bacteria (*E. coli*) or another organism (ex: virus)
 - A transgenic organism is created by adding a transgene
 - A **transgene** is a new gene introduced into an organism

PRACTICE:

- 1. The purpose of polymerase chain reaction is to do what?
 - a. Create RNA templates
 - b. Create fluorescent probes
 - c. Amplify a short DNA sequence
 - d. Isolate proteins

- 2. Which of the following lists the steps of genetic cloning in the proper order?
 - a. PCR → Restriction Enzyme Cutting → Ligate into a Vector → Placed into Organism
 - b. Restriction Enzyme Cutting → PCR→ Ligate into a Vector → Placed into Organism
 - c. Ligate into a Vector → PCR → Restriction Enzyme Cutting → Placed into Organism
 - d. PCR → Ligate into a Vector → Restriction Enzyme Cutting → Placed into Organism