CONCEPT: CHI-SQUARE ANAYLSIS

• A chi-square test is used to examine whether to expected result is closet enough to the observed result

□ Genetics is never ______ you wont get a perfect 3:1 ratio or 9:3:3:1 ratio

- A chi-square test is used to check if your numbers are close enough to expected ratio
- Observed numbers The numbers you actually get
- Expected numbers The numbers that you expected to get. The "perfect ratio" numbers

□ Formula:

- Observed = o

 $\chi^2 = \Sigma \frac{(o-e)^2}{e}$

- Expected = e

PRACTICE:

- A. You bred a purple plant, which you think is heterozygous (Aa), with a homozygous recessive (aa) white plant. There were 120 offspring produces, 55 are purple and 65 are white. Was your red plant heterozygous? Assume Mendelian inheritance.
- 1. Determine what the expected ratio of the heterozygous (Aa) cross with a homozygous recessive (aa) plants would be?

- If there are 120 offspring _____ would be purple and ____ would be white.
- These are your expected numbers

2. Use tUse the chi-square formula to calculate your chi square value

CLASS	0	E	(O-E) ²	(O-E) ² / E
Red	55	60	25	0.42
White	65	60	25	0.42
			Total	0.84

- 3. Use the chi-square distribution table to determine whether or not your hypothesis is true.
 - a. Calculate your degrees of freedom; df = # of variables 1
 - i. There are two variables in this problem (purple and white)
 - ii. Df = 2 1 = 1
 - b. Within your calculated degrees of freedom row, find where your chi-square value would be.
 - c. Determine the range of probability (p value)
 - i. For this problem is is 0.50-0.30, which is 50%-30%

Degrees of freedom (df)						χ ² val	ue ^[18]				
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

- 4. Determine If you accept or reject your *null hypothesis*
 - a. The null hypothesis states there is no difference between measured and predicted values
 - i. In this problem, the null hypothesis would be that 55 red and 65 white plants is close enough to 60 red and 60 white plants and therefore they are not different.
 - b. Generally, you accept (fail to reject) the null hypothesis if the probability is greater than 5% or 0.05
 - c. Generally, you **reject** the null hypothesis if the probability is less than 5% or 0.05
 - The probability for this question was between 30% and 50% (0.3 and 0.5) therefore we **accept** the null hypothesis

- 5. Figure out what the null hypothesis means for our actual problem
 - a. Accepting the null hypothesis, means that the observed and expected aren't different
 - b. Therefore, we are 95% confident that the purple plant was heterozygous

PRACTICE

Using the following F₂ phenotypes from a monohybrid cross, answer the following question.

F ₂ Phenotype	# of F ₂ Offspring		
Red Flowers	892		
White Flower	294		

- 1. Which of the following null hypothesis is the best to test using the chi-square test?
 - a. There is no difference between my values and an expected 3:1 ratio
 - b. There is no difference between my values and an expected 2:2 ratio
 - c. There is no difference between my values and an expected 9:3:3:1 ratio
 - d. There is no difference between my values and an expected 3:2 ratio

Using the following F₂ phenotypes from a monohybrid cross, answer the following question.

F ₂ Phenotype	# of F ₂ Offspring
Red Flowers	892
White Flower	294

- 2. Which of the following represents the appropriate degrees of freedom for this problem?
 - a. 1
 - b. 2
 - c. 3
 - d. 4

Using the following F₂ phenotypes from a monohybrid cross, answer the following question.

F ₂ Phenotype	# of F ₂ Offspring
Red Flowers	892
White Flower	294

- 3. Using the chi-square formula, calculate the chi-square value.
 - a. 0.321
 - b. 0.191
 - c. 0.450
 - d. 0.005

- 4. Assuming a chi-square value of 0.191 and a single degree of freedom, what is the range of p-values?
 - a. 0.70-0.50
 - b. 0.90-0.80
 - c. 0.50-0.30
 - d. 0.95-0.90

5.	If a chi-square value has led you to receive a p-value range of 0.70-0.50, will you accept or reject the null
	hypothesis?

- a. Accept the null hypothesis
- b. Reject the null hypothesis

- 6. Which of the follow statements is true when we accept a null hypothesis.
 - a. The observed and expected values are different
 - b. We are 95% confident that our observed and expected values are different
 - c. We are 95% confident that our observed and expected values are the same
 - d. We are 50% confident that our observed and expected values are the same