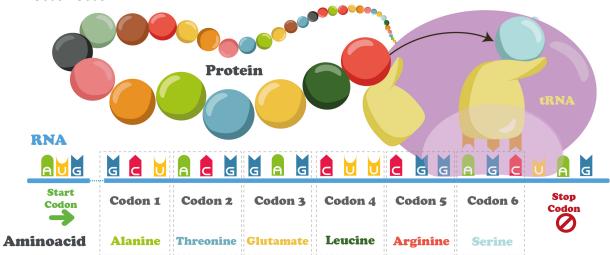
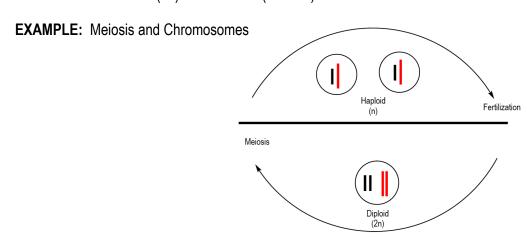

CONCEPT: FUNDAMENTALS OF GENETICS

Genetics Basics

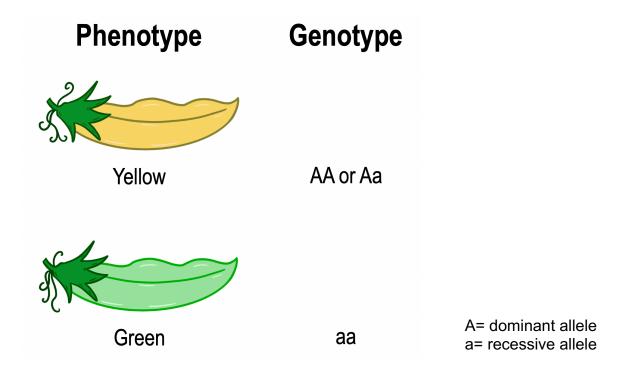

- DNA is the fundamental unit of genetics
 - □ DNA is made up of four bases (nucleotides): Adenine (A), Thymine (T), Guanine (G), Cytosine (C)
 - Chargoff's Rules state that A & T (2 H+ bonds) pair together and G & C (3 H+ Bonds) pair together
 - The two strands of DNA are complementary, and form a double helix
 - □ DNA contains **genes**, which is a stretch of DNA that has the information for a protein
 - Genes have **regulatory elements** that control whether or not the gene is expressed
 - □ Genes come in different varieties
 - An **allele** is a gene variant
 - In diploid cells there are two alleles per gene

EXAMPLE: Alleles vs. Genes


- □ To go from DNA to Protein there are two main steps
 - **Transcription** is the process of turning DNA into messenger RNA (mRNA)
 - It can also create transfer RNA (tRNA) and ribosomal RNA (rRNA)
 - **Translation** is the process of turning mRNA into proteins
- □ DNA does not encode a protein in a 1:1 ratio
 - A **codon** made up of three nucleotides encoded for one amino acid, which is used to build proteins

EXAMPLE: Codon Code

Chromosomal Fundamentals


- □ Chromosomes contain many genes
 - Homologous chromosomes are chromosomes that exist in pairs
 - **Diploid (2n)** organisms have homologous chromosomes (a chromosome pair)
 - Haploid (n) organisms have only one chromosome copy
 - Chromosomal theory of inheritance describes that inherited traits come from genes on chromosomes
 - Passed through **gametes** (sex cells)
- □ **Meiosis** is the process of creating gametes
 - In Diploid individuals it takes a (2n) cell and produces 4 (n) cells
- □ **Mitosis** is the process of creating somatic cells (all cells but gametes)
 - Turns (2n) cells into two (2n cells)

Descriptive Genetics

- □ The genetics of an individual can be described in two many ways
 - The **genotype** is the set of alleles for a given trait by an organism
 - The **phenotype** is the observable features
- □ Genes can present themselves as many different types of traits
 - Morphological Traits affect the appearance of the organisms
 - Physiological Traits affect the ability of an organism to function properly
 - Behavioral Traits affect the way an organism responds to its environment

EXAMPLE:

- □ There are three divisions of **Genetics**, which is the study of individual heredity and variation
 - **Transmission genetics:** Studies the ability to pass traits onto the next generation
 - **Molecular genetics:** Studies the gene activity at a molecular level (DNA replication, transcription, etc.)
 - Population genetics: Studies genes in terms of an entire population

PRACTICE:

- 2. What is an allele?
 - a. A nucleotide variant.
 - b. Different variants of a gene.c. Proteins.d. Codon.