
CONCEPT: LAMBDA BACTERIOPHAGE LIFE CYCLE REGULATION

- Bacteriophages are viruses that infect bacteria
 - □ Bacteriophages have _____ life cycles
 - Lytic cycle is a period of active virus replication, which bursts the host cell
 - Lysogenic cycle is a period where the virus integrates into the genome, and is silent
 - ☐ The bacteriophage chromosome contains two sets of genes: One for each the lytic and lysogenic cycle
 - Regulating the expression of these genes determines which cycle the bacteriophage enters

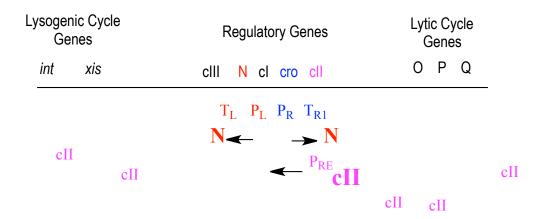
- □ If there are good growth conditions, there will be more **cro protein** which leads to lytic cycle
- □ If there are poor growth conditions, there will be more **lambda protein (cl)** which leads to the lysogenic cycle

Mechanism of Regulation

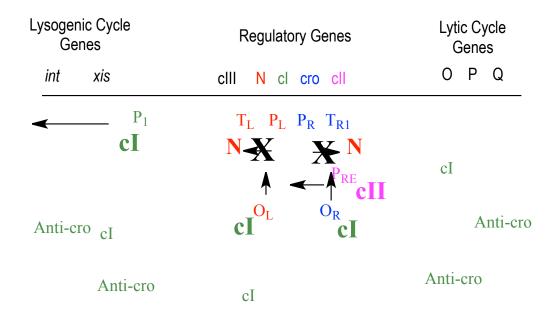
- The regulatory genes are physically _____ on the bacterial chromosome
 - $\hfill\Box$ The $\emph{lytic cycle}$ involves the O, P, and Q genes
 - □ The *lysogenic cycle* includes the *int* and *xis* genes
 - □ In between the lytic and lysogenic cycle genes there four genes: clll, N, cl, cro, and cll

EXAMPLE:

Lysogenic Cycle Genes		Regulatory Genes	Lytic Cycle Genes
int	xis	cIII N cl cro cll	O P Q

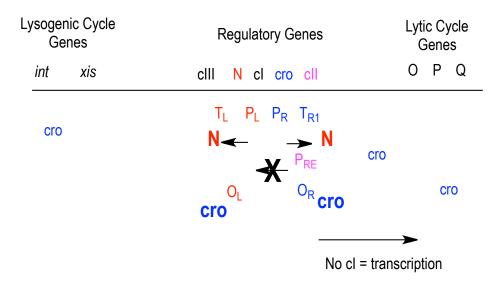

- □ The first two mRNAs transcribed are controlled via different _____
 - The ${\bf N}$ gene is transcribed by the P_L promoter. It is terminated by T_L
 - The **cro** gene is transcribed by the P_R promoter. It is terminated by T_{R1}
 - These genes are transcribed in reverse of the other
- □ If there is a lot of N protein around, this will cause both the N and cro genes to transcribe past the terminator
 - The N protein is an anti-terminator, which allows transcription to take place

Lysogenic Cycle Genes		Regulatory Genes	Lytic Cycle Genes
int	xis	clll N cl cro cll	O P Q
	N	$\begin{array}{ccc} T_L & P_L & P_R & T_{R1} \\ N \longleftarrow & \longrightarrow N \end{array}$	N N
]	N N	NN N N N	N
		N	

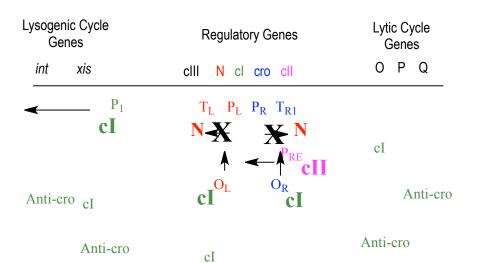

Decision to enter the lysogenic vs. lytic cycles

- The cl protein (lamda protein) controls entrance into the lysogenic cycle
 - □ After the N gene blocks termination, the **cll** protein is _____
 - The **cll protein** activates the P_{RE} promoter that sits at the T_{R1}, and transcribes **anti-cro** and **cl**
 - Anti-cro is the reverse of the cro gene
 - cl (lambda protein) controls entering the lysogenic cycle

EXAMPLE:



- □ cl binds to two operator regions: OR and OL and inhibits them by preventing transcription of N and cro and longer
 - cl activates the P_{RM} promoter which promotes transcription of more cl protein
 - cl activates the P₁ promoter which activates the transcription of int and xis



- The **cro protein** controls _____ into the lytic cycle
 - \Box When there is more cro around it binds to O_L and O_R and repress them
 - When O_L and O_R are inhibited, this inhibits P_L and P_{RM}
 - This lowers the amount of cl in the cell which means it wont inhibit anything
 - A lot of lytic cycle genes are created

EXAMPLE:

- In bacterial cells, proteases which destroy the cll protein, control _____ into the lytic or lysogenic cycle
 - □ In good growth conditions there are plenty of **cll proteases** that degrade cll
 - Less cll means that the P₁ promoter wont be activated by cl, and therefore promote the lytic cycle
 - □ In poor growth conditions there are not many cll proteases, meaning that there are high levels of cll
 - High levels of cII will activate cl and P₁ and activate the lysogenic cycle

PRACTICE:

- 1. In which of the following life cycles does a bacteriophage integrate itself into the host genome?
 - a. Lysogenic cycle
 - b. Integrative cycle
 - c. Lytic cycle
 - d. Subdued cycle

- 2. In good growth conditions the bacteriophage is more likely to enter into which life cycle?
 - a. Lysogenic cycle
 - b. Integrative cycle
 - c. Lytic cycle
 - d. Subdued cycle

- 3. Activation of which of the following genes leads to entrance into the lysogenic cycle?
 - a. N, cro, and O genes
 - b. O, P, and Q genes
 - c. Int and xis genes
 - d. clll genes

- 4. The N protein is an anti-terminator. What does this mean?
 - a. The N protein terminates transcription
 - b. The N protein allows for transcription to occur
 - c. The N protein terminates translation
 - d. The N protein allows for translation to occur

- 5. Which of the following proteins is mainly responsible for entering the bacteriophage into the lysogenic cycle?

 a. N protein

 - b. Cro proteinc. cl (Lambda) protein
 - d. cll proteases