CONCEPT: MAPPING GENES

- Measuring recombination is traditionally the best way to map gene loci on a chromosome
 - □ **Recombination frequencies** is the frequency of recombinant offspring produced in a cross

$$Map Distance = \frac{Number of recombinant offspring}{Total number of off spring} X 100$$

☐ Morgan's cross went like:

P:
$$p+/p+ vg+/vg+ x p/p vg/vg$$

Gametes $p+ vg+ p vg+/vg$

F₁ $p+/p vg+/vg$

F₁ $x tester p+/p vg+/vg x p/p vg/vg$

Observed Offspring Ratios:

Genotype	Phenotype	Offspring total (2839)	Types
p+ vg+	Red, Long wing	1339	Parental
p vg	Purple, vestigial	1195	Parental
p+ vg	Red, vestigial	151	Recombinant
pr vg+	Purple, long wing	154	Recombinant

$$\frac{151+154}{2839} \quad X \quad 100 \quad = \quad 10.7\%$$

- $\hfill\Box$ What is the significance of the 10.7% recombination?
 - The area between the two genes is 10.7% of the length of the chromosome
 - So we say these two genes are 10.7 map units (m.u.) apart
 - Therefore, physical distance is directly correlated with recombination frequencies
 - The closer two genes are, the less likely they are to cross over and recombine

□ Recombination frequencies can also determine a gene is linked				
- Linkage is likely occurring if the recombination frequencies are less than 50%				
- Linkage is likely not occurring if the recombination frequencies are close or equal to 50%				
□ Recombination frequencies are <u>never</u> greater than 50% because:				
- Independent assortment equally assorts alleles, but cannot cause more than 50% recombination				
EXAMPLE:				
Genotype AaBb				
Phenotype Yellow Round				
What are the genotypes of the gametes?				
Modern Mapping				
There are types of gene loci maps				
□ Recombination maps use recombination frequencies to determine gene loci				
- Can be used to map 2+ gene loci				
□ Physical maps use the action genomic sequence to determine gene loci				
- Involves sequencing the entire chromosome, or genome of an organism				
□ Mapping via certain genomic markers can also be used				
- Single Nucleotide Polymorphisms are single nucleotide changes that can be markers				
- Restriction fragment length polymorphisms (RFLPs) are sequences that restriction enzymes cut				
- Restriction enzymes are proteins that cut DNA at one specific sequence				
- Microsatellites are short repetitive sequences found throughout the genome				

PRACTICE

- 1. The genetic distances between three genes (ab, nm, kf) were determined using a two-point mapping cross. Determine the sequence of the three genes.
 - a. Ab nm kf
 - b. Ab kf nm
 - c. Kf ab nm

Gene	Distance
ab - nm	45
ab – kf	3
nm – kf	42

- 2. True or False: Recombination frequencies are never greater than 50%
 - a. True
 - b. False

3. Using the following data collected from a test cross, calculate the recombination frequency.

a. 15.9%

b. 10.3%

c. 40.5%

d. 32.7%

Phenotype	Offspring
Parental	1400
Parental	1200
Recombinant	150
Recombinant	150