CONCEPT: DNA REPLICATION

- DNA replication occurs ______ on each strand of DNA
 - □ On the **leading strand** DNA replication proceeds continuously adding nucleotides from 5' to 3'
 - □ On the **lagging strand** DNA replication proceeds continuously adding nucleotides from 5' to 3'
 - □ DNA can only be synthesized from 5' to 3', meaning that the template strand is read from 3' to 5'

EXAMPLE:

Steps of Replication

- The first step of replication involves ______ the double helix
 - □ **DNA Helicase** attaches to the DNA and unwinds the double helix
 - Breaks hydrogen bonds
 - □ Single-strand binding proteins bind to the unwound DNA strands and prevent them from reforming
 - □ **Topoisomerases** relax the supercoiling caused from DNA unwinding

EXAMPLE:

- The second step of replication involves the use of important
 - ☐ The **Pol III Holoenzyme** consists of **DNA polymerase III** and accessory replication proteins
 - DNA pol III replicates the DNA
 - Without accessory proteins, DNA pol III would only add around 10 nucleotides before falling off the DNA
 - □ To start replication the **primase (primosome)** enzyme synthesizes RNA primers
 - DNA pol III recognizes these primers and starts DNA replication
 - DNA pol I removes the RNA primers and replaces them with DNA after replication has started

EXAMPLE:

- The lagging strand is replicated discontinuously, creating many replicated DNA
 - ☐ As the helix is unwound, primase adds RNA primers onto the 3' end of the template strand
 - Replication continuous until it reaches the beginning of the strand, or a previous fragment
 - Okazaki fragments are created by the discontinuous replication on the lagging strand
 - □ **DNA ligase** joins all Okazaki fragments together, to create a single new replicated strand of DNA

EXAMPLE:

Proofreading

- DNA replication occurs with extremely high _______
 - □ There is less than 1 error per every 10¹⁰ nucleotides replicated
 - Nearly 1000 nucleotides are replicated per strand, per second
 - ☐ The DNA polymerase has **proofreading** abilities
 - If a DNA mismatch is made between two base pairs, it will pause, excise the base, and replace it
 - DNA polymerase has 3' to 5' exonuclease activity meaning it can excise a mismatched nucleotide

EXAMPLE:

PRACTICE

- 1. Which of the following proteins is responsible for unwinding the double stranded DNA?
 - a. Topoissomerases
 - b. Single-stranded binding proteins
 - c. DNA helicase
 - d. DNA polymerase III

- 2. DNA replication synthesizes DNA in which direction?
 - a. 5' to 3'
 - b. 3' to 5'
 - c. Leading strand 5' to 3', lagging strand 3' to 5'
 - d. Leading strand 3' to 5', lagging strand 5' to 3'

- 4. Which of the following proteins is responsible for synthesizing RNA primers?
 - a. Topoisomerases
 - b. Single-stranded binding proteins
 - c. Primase
 - d. DNA polymerase III

- The short DNA fragments created during lagging strand replication are called what?
 a. Primers
 b. Okazaki Fragments

 - c. Replicates
 d. Exonucleases