CONCEPT: BIOINFORMATICS

- - □ What information does the genome hold?
 - Genes, RNAs, binding sites for proteins, non-coding RNAs, positions for gene regulation
 - Annotation marks these functional elements of the genome

EXAMPLE:

- □ Bioinformatics can be used to determine protein-encoding genes from the genomic sequence:
 - **Proteome** is the inventory of all proteins encoded by an organism's genome
 - Open-reading frames (ORFs) are sequences with characteristics of typical genes
 - 5' and 3' end sequences, introns, exons
 - Codon bias is when an organism prefers one codon over other codons for the same amino acids
 - Drosophila uses UGC 73% and UGU 27% to code for cysteine
- □ cDNA sequences can be used to _____- ORFs
 - cDNA is DNA reverse transcribed from RNA
 - Introns are removed
 - Expressed sequence tags (ESTs) are large data sets of short cDNA sequences
 - Made to determine gene boundaries

EXAMPLE:

- □ Bioinformatics can be used to ______ DNA binding sites
 - Computer software searches the genomic sequence for predicted sequences (promoters, splice sites, etc)
- □ Bioinformatics can be used to study evolution and DNA similarity
 - BLAST searches can be used to determine if a particular sequence is similar to other known sequences

EXAMPLE:

PRACTICE:

- 1. Which of the following is NOT a piece of information that bioinformatics can analyze?
 - a. Location of DNA-Protein binding sites
 - b. Identifying all the proteins expressed in a skin cell
 - c. A list of all introns in the genome
 - d. The function of one gene

- 2. Which of the following can be used to identify an open-reading frame?
 - a. cDNA sequences
 - b. Introns
 - c. Enhancer locations
 - d. Exons