CONCEPT: mRNA MODIFICATION

- After transcription RNA goes through ______ processing steps before translation
 - □ It gets a **5' cap** through the attachment of a 7-methylguanosine molecule
 - Protects RNA from degradation
 - Important for translation
 - □ It gets a 3' polyadenylation tail through adding 150-200 adenine nucleotides at the end
 - A polyadenylation signal (AAUAAA) triggers the addition of the poly A tail

EXAMPLE:

Protein Coding mRNA

- Splicing removes non-coding introns from the _____ exons
 - ☐ The **Spliceosome** splices the introns out of the pre-mRNA
 - The spliceosome is made up of **small nuclear RNAs** (U1,U2,U4,U5,U6) and proteins
 - We call the spliceosome small ribonucleoprotein complex (snRNP)
 - ☐ The spliceosome recognizes three sequences that are required for splicing
 - The 5' splice site is a GU
 - The 3' splice site a AG (called the GU-AG rule)
 - Branch point is a single adenine nucleotide around 18-40 nucleotides upstream of the 3' splice site
 - The intron forms a **lariat**, which is a small circular structure, when it is excised from the pre-mRNA

EXAMPLE:

- RNA editing is a form of post-transcriptional RNA ______
 - □ **Substitution editing** is when a nucleotide is changes
 - □ Insertional editing is when a nucleotide is added
 - □ **Deletion editing** is when a nucleotide is deleted
 - □ Guide RNAs are RNAs that choose where RNA editing will occur

EXAMPLE:

