CONCEPT: TELOMERES AND TELOMERASE

•	The ends of chromosome:	(telomeres) a	are replicated	
---	-------------------------	---------------	----------------	--

- □ In the leading strand, replication continuous all the way to the end
- □ In the lagging strand, primers are required to create Okazaki fragments but what about after the last primer?
 - If the end was replicated normally the chromosome would shorten after each replication

EXAMPLE:

- Telomerase is the enzyme responsible for replicating the telomeres on the lagging strand
 - □ Telomerase _____ onto the 3' end of DNA molecules
 - Telomerase contains a short RNA molecule that reads 3' AAUCCC 5' this is a template for replication
 - Called reverse transcription when RNA is used as a template for DNA
 - □ Telomerase then repeatedly adds 5' TTAGGG 3' onto the end of the telomere
 - This prevents the telomere ends from shortening
 - □ Telomeres contain lots of TTAGGG repeats

EXAMPLE:

- □ Different cell types contain different ______ of telomerase
 - Germ cells have a lot of telomerase
 - Somatic cells have little to no telomerase
- $\hfill\Box$ In somatic cells, the telomeres continue to get shorter, until the cell dies