CONCEPT: ELECTRON TRANSPORT CHAIN

Intro to Electron Transport Chain

- Electron Transport Chain (______): one of the last steps of _____ respiration of catabolism.
 - □ Series of _____ reactions that harness energy of ____ from NADH & FADH₂ coenzymes.
 - NADH & FADH2 are produced in the citric acid cycle.

EXAMPLE: Which of the following correctly describe(s) the electron transport chain?

- a) Harnessing of energy from high-energy electrons from Krebs cycle.
- b) The breakdown of NADH and FADH2 to carbon dioxide.
- c) Oxidation of NADH and FADH2 coenzymes.
- d) Redox reactions facilitated by enzyme complexes and electron carriers located in the inner membrane of the cell.

CONCEPT: ELECTRON TRANSPORT CHAIN

Electron Transport Chain Process

- ETC uses energy from ____ to generate a ____ ion gradient by pumping H⁺ into the _____membrane space.
 - □ Increase [H⁺] in the intermembrane space (_____ pH).
- 1 NADH transfers e- to Complex __.
- 2 FADH₂ transfers e-to Complex ___.
- 3 Complex I & II transfer e-to _____.
- 4 CoQ transfers e-to Complex ____.
- 5 Complex III transfers e- to _____
- 6 Cyt c transfers e- to Complex ____.
- 7 e- are accepted by _____.

NOTE: Only Complexes I, III, IV pump into intermembrane space.

- Final Electron Acceptor: the final molecule that accepts the ETC's electrons is _____ gas.
 - □ Oxygen gas (O₂) interacts with H+ ions to form _____.
- Summary of ETC Reactions:

EXAMPLE: What is the primary role of Coenzyme Q and Cytochrome c in ETC?

- a) To transport H+ ions into the intermembrane space.
- b) To shuttle electrons from one complex to another.
- c) To synthesize ATP.
- d) To act as final electron acceptors.

CONCEPT: ELECTRON TRANSPORT CHAIN

Remembering ETC

HINT 2: FADH₂ — Complex _ (does not pump protons.)

PRACTICE: FADH₂ can be oxidized at both complex I and II in the inner membrane of mitochondria. (T/F)

- a) True
- b) False

PRACTICE: Write a reaction representing oxidation of NADH coenzyme.

PRACTICE: Protons are pumped into the intermembrane space due to:

- a) Energy provided by the electrons as they pass through complexes I, III & IV.
- b) Decreasing of the pH in the intermembrane space.
- c) CoQ pumping electrons through the complexes.
- d) Formation of water from final electron acceptor.

PRACTICE: The mobile electron carriers of the ETC are:

- a) Complex I & II
- b) Complex III & IV
- c) NADH & FADH₂
- d) CoQ & Cyt c