CONCEPT: AMINO ACID CATABOLISM: AMINO GROUP - The first stage of amino acid catabolism is the removal of the amino group in the liver; this is a _____ step process. - a Transamination: removal of ______ group, occurs in the _____. - **b** Oxidative Deamination: formation of ammonium ion (_____), occurs in the mitochondria. ## (a) <u>Transamination</u> • A reversible reaction, _____ group of amino acid and _____ group of α -keto acid are exchanged. \Box α -keto acid is usually ______, produces _____ as the new amino acid. **EXAMPLE:** Complete a transamination reaction for aspartate. ### CONCEPT: AMINO ACID CATABOLISM: AMINO GROUP # **b** Oxidative Deamination - Glutamate is _____ back to α -ketoglutarate by NAD+, forming _____ ion. - □ NH₄⁺ ion then enters the _____ cycle. **EXAMPLE:** Complete a transamination and oxidative deamination reactions for threonine. **PRACTICE**: What amino acid yields the following a-keto acid through transamination? a) Lysine b) Methionine c) Cysteine d) Glutamate $$H_3C$$ S C H_2 C O O ### CONCEPT: AMINO ACID CATABOLISM: AMINO GROUP **PRACTICE:** Draw α -keto acid produced by transamination of glutamine. $$\begin{array}{c|c} O & H_2 & O \\ H_2 N & C & C & M_2 \\ H_2 & M_3 & O \end{array}$$