CONCEPT: ENZYME REGULATION: ALLOSTERIC CONTROL

• Enzyme regulation is a mechanism cells use to turn ____ or ____ enzymes as needed. □ Three types: 1) _____ Control, 2) ____ Control, and 3) ____ Modification

Allosteric Control

- Allosteric control is achieved by allosteric enzymes that have ______ types of binding sites.
 - □ Active site is for the substrate. □ Allosteric site is for the _____.
 - □ **Regulator/Effector:** binds to allosteric site and _____ or closes an active site.

- Allosteric Regulator
- Positive Regulator: _____ rate of reaction by making an active site available to substrate.
- Negative Regulator: _____ rate of reaction by making an active site ____available to substrate.

EXAMPLE: Which of the following statements is incorrect about allosteric enzymes?

- a) The activity of an allosteric enzyme can be controlled by a regulator molecule.
- b) Allosteric enzymes have two types of binding sites.
- c) The binding of allosteric regulator to the enzyme can change the availability of active site.
- d) The overall shape of an allosteric enzyme always remains the same.

PRACTICE: Isoleucine can attach to the enzyme threonine deaminase and can decrease its activity. Isoleucine can be classified as:

- a) Positive allosteric regulator
- b) Negative allosteric regulator