CONCEPT: KETONE BODIES

Intro to Ketone Bodies

- **Ketone Bodies:** 3 acetyl CoA metabolites produced in the mitochondria of the ______.
 - □ Used as _____ source by the heart, skeletal muscles, and brain when _____ is not available.

- Ketogenesis: synthesis of ketone bodies from
 - □ Occurs during _____ carbohydrate diet, starvation or due to diabetes.

- β-oxidation of FA produces _____ amounts of acetyl CoA that cannot be processed by the _____ acid cycle.
 - □ Low levels of carbohydrates deplete _____acetate.
 - □ **Recall:** _____neogenesis creates and uses oxaloacetate.

- **Ketosis:** condition where _____ amounts of ketone bodies are present in the blood and urine.
 - □ Two ketone bodies are carboxylic _____ and cause ketoacidosis: decrease in blood ___

EXAMPLE: Which statement best describes the process of ketogenesis?

- a) Ketone bodies are synthesized in the mitochondria of adipose cells.
- b) Excess glucose leads to formation of ketone bodies from pyruvate.
- c) Ketone bodies are synthesized from oxaloacetate, which is a metabolite that is converted from excess acetyl CoA.
- d) Ketogenesis occurs as a result of deficiency of glucose and can cause high levels of acetoacetate in the blood.

CONCEPT: KETONE BODIES

Ketogenesis Reactions

- 1 Condensation: 2 acetyl CoA molecules condense, forming a _____ intermediate.
 - ☐ The reverse of the last step of ______.

2 Hydrolysis: cleavage of acetoacetyl CoA forms first ketone body (______).

$$\begin{array}{|c|c|c|c|c|}\hline & O & O & O & CoA-SH & O & H_2 & CoA-SH & O & H_2 & CoA-SH & O &$$

- 3 Reduction/Decarboxylation: acetoacetate is ______ to form second ketone body (3-hydroxybutyrate).
 - □ In the bloodstream, some acetoacetate is decarboxylated to _____.

CONCEPT: KETONE BODIES

EXAMPLE: Ketone body produced during hydrolysis reaction of ketogenesis is:

- a) acetoacetate
- b) acetone
- c) acetate
- d) 3-hydroxybutyrate

PRACTICE: Which reaction produces a ketone body with an alcohol functional group? Draw the ketone body.

- a) condensation
- b) hydrolysis
- c) reduction
- d) decarboxylation

PRACTICE: How is oxaloacetate related to ketone bodies formation?

- a) High levels of acetyl CoA accumulate and increase the rate of citric acid cycle.
- b) Oxaloacetate combines with acetyl CoA to form citrate; this leads to formation of ketone bodies.
- c) Citric acid cycle is not dependent on oxaloacetate, and all acetyl CoA is free to be oxidized in the cycle.
- d) Ketone bodies are formed when oxaloacetate levels are low.
- e) Ketogenesis can speed up gluconeogenesis by producing more oxaloacetate.