CONCEPT: DIPOLE MOMENT (SIMPLIFIED)

- Electronegativity (EN): Measurement of an element's ability to attract electrons to itself.
 - □ In 1932, the American chemist Linus Pauling proposed electronegativity values for the elements.
 - □ Periodic Trend: Electronegativity _____ moving from left to right across a period and going up a group.

												—	Electronegativity					
	1A																	8A
	(1)																	(8)
1	Н	2A											3A	4A	5A	6A	7A	
	2.1	(2)											(3)	(4)	(5)	(6)	(7)	
2	Li	Be											В	С	N	0	F	
-	1.0	1.5	3B	4B	5B	6B	7B		8B		1B	2B	2.0	2.5	3.0	3.5	4.0	
3	Na 0.9	Mg 1.2	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	
4	K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
5	Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	 2.5	Xe 2.6
6	Cs 0.7	Ba 0.9	La 1.3	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
7	Fr 0.7	Ra o.9																

EXAMPLE: Which of the following represents the most electronegative alkaline earth metal?

a) Cs

b) Li

c) H

d) Be

e) Al

- Dipole Moment: Polarity that arises when elements in a bond have a significant difference in their electronegativities.
 - $\hfill \square$ Polarity: _____ sharing of electrons between bonding atoms.
 - □ A difference in electronegativity greater than _____ is considered significant.
 - Difference in Electronegativity (ΔEN) = ____ electronegativity value _ ___ electronegativity value.
 - □ The dipole moment is illustrated by a *dipole arrow* that points towards the _____ electronegative element.

EXAMPLE: Calculate the difference in electronegativity values between carbon and fluorine.

a) 0.5

b) 2.0

c) -1.5

d) 1.5

e) 0.0

PRACTICE: Arrange the following molecules in order of decreasing dipole moment.

H-I

H–F

H-Br

H-CI

CONCEPT: DIPOLE MOMENT (SIMPLIFIED)

Further Chemical Bond Classifications

- The difference in electronegativities between two elements can determine the type of chemical bond present.
 - □ The ____ difference in electronegativity then ____ the polarity of the bond.

Bond Classifications									
Electronegative Difference (△EN)	Bond Type	Bond Illustration							
Zero (0.0)									
Sma ll 0.1 – 0.4)		 C ←;→ H							
Intermediate (0.5 – 1.7)		CI							
Large (> 1.7)		CI-: Na ⁺							

EXAMPLE: For those listed below, which has the most polar bond?

- a) S-Se
- b) S-H
- c) CI-F
- d) S-F
- e) S-O

PRACTICE: Which of the following correctly identifies the chemical bond between a carbon and oxygen atom?

a) Polar Covalent

b) Pure Covalent

c) Nonpolar Covalent

CONCEPT: DIPOLE MOMENT (SIMPLIFIED)

PRACTICE: Arrange the following elements in order of decreasing electronegativity: P, Na, N, Al

- a) P > Na > N > Al

- b) N > P > Na > Al c) Na > Al > P > N d) N > P > Al > Na
- e) P > N > Na > Al

PRACTICE: Between which two elements is the difference in electronegativity the greatest?

- a) C and Si
- b) Li and I
- c) Na and P
- d) K and F
- e) Br and Cl

PRACTICE: Which of the following correctly identifies the chemical bond between two bromine atoms?

a) Polar Covalent

b) Pure Covalent

- c) Nonpolar Covalent
- d) Ionic