CONCEPT: DIPOLE MOMENT (SIMPLIFIED) - Electronegativity (EN): Measurement of an element's ability to attract electrons to itself. - □ In 1932, the American chemist Linus Pauling proposed electronegativity values for the elements. - □ Periodic Trend: Electronegativity _____ moving from left to right across a period and going up a group. | | | | | | | | | | | | | — | Electronegativity | | | | | | |---|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|-----------|-----------| | | 1A | | | | | | | | | | | | | | | | | 8A | | | (1) | | | | | | | | | | | | | | | | | (8) | | 1 | Н | 2A | | | | | | | | | | | 3A | 4A | 5A | 6A | 7A | | | | 2.1 | (2) | | | | | | | | | | | (3) | (4) | (5) | (6) | (7) | | | 2 | Li | Be | | | | | | | | | | | В | С | N | 0 | F | | | - | 1.0 | 1.5 | 3B | 4B | 5B | 6B | 7B | | 8B | | 1B | 2B | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | | 3 | Na
0.9 | Mg
1.2 | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | AI
1.5 | Si
1.8 | P
2.1 | S
2.5 | CI
3.0 | | | 4 | K
0.8 | Ca
1.0 | Sc
1.3 | Ti
1.5 | V
1.6 | Cr
1.6 | Mn
1.5 | Fe
1.8 | Co
1.9 | Ni
1.9 | Cu
1.9 | Zn
1.6 | Ga
1.6 | Ge
1.8 | As
2.0 | Se
2.4 | Br
2.8 | Kr
3.0 | | 5 | Rb
0.8 | Sr
1.0 | Y
1.2 | Zr
1.4 | Nb
1.6 | Mo
1.8 | Tc
1.9 | Ru
2.2 | Rh | Pd
2.2 | Ag
1.9 | Cd
1.7 | In
1.7 | Sn
1.8 | Sb
1.9 | Te
2.1 |
2.5 | Xe
2.6 | | 6 | Cs
0.7 | Ba
0.9 | La
1.3 | Hf
1.3 | Ta
1.5 | W
1.7 | Re
1.9 | Os
2.2 | lr
2.2 | Pt
2.2 | Au
2.4 | Hg
1.9 | TI
1.8 | Pb
1.9 | Bi
1.9 | Po
2.0 | At 2.2 | | | 7 | Fr
0.7 | Ra
o.9 | | | | | | | | | | | | | | | | | **EXAMPLE:** Which of the following represents the most electronegative alkaline earth metal? a) Cs b) Li c) H d) Be e) Al - Dipole Moment: Polarity that arises when elements in a bond have a significant difference in their electronegativities. - $\hfill \square$ Polarity: _____ sharing of electrons between bonding atoms. - □ A difference in electronegativity greater than _____ is considered significant. - Difference in Electronegativity (ΔEN) = ____ electronegativity value _ ___ electronegativity value. - □ The dipole moment is illustrated by a *dipole arrow* that points towards the _____ electronegative element. **EXAMPLE:** Calculate the difference in electronegativity values between carbon and fluorine. a) 0.5 b) 2.0 c) -1.5 d) 1.5 e) 0.0 **PRACTICE:** Arrange the following molecules in order of decreasing dipole moment. H-I H–F H-Br H-CI ## **CONCEPT:** DIPOLE MOMENT (SIMPLIFIED) ## **Further Chemical Bond Classifications** - The difference in electronegativities between two elements can determine the type of chemical bond present. - □ The ____ difference in electronegativity then ____ the polarity of the bond. | Bond Classifications | | | | | | | | | | |-------------------------------------|-----------|----------------------|--|--|--|--|--|--|--| | Electronegative
Difference (△EN) | Bond Type | Bond Illustration | | | | | | | | | Zero (0.0) | | | | | | | | | | | Sma ll
0.1 – 0.4) | |
C ←;→ H | | | | | | | | | Intermediate
(0.5 – 1.7) | | CI | | | | | | | | | Large
(> 1.7) | | CI-: Na ⁺ | | | | | | | | **EXAMPLE:** For those listed below, which has the most polar bond? - a) S-Se - b) S-H - c) CI-F - d) S-F - e) S-O PRACTICE: Which of the following correctly identifies the chemical bond between a carbon and oxygen atom? a) Polar Covalent b) Pure Covalent c) Nonpolar Covalent ## **CONCEPT:** DIPOLE MOMENT (SIMPLIFIED) PRACTICE: Arrange the following elements in order of decreasing electronegativity: P, Na, N, Al - a) P > Na > N > Al - b) N > P > Na > Al c) Na > Al > P > N d) N > P > Al > Na - e) P > N > Na > Al **PRACTICE:** Between which two elements is the difference in electronegativity the greatest? - a) C and Si - b) Li and I - c) Na and P - d) K and F - e) Br and Cl **PRACTICE:** Which of the following correctly identifies the chemical bond between two bromine atoms? a) Polar Covalent b) Pure Covalent - c) Nonpolar Covalent - d) Ionic