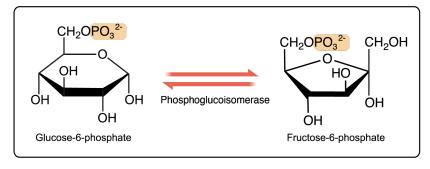
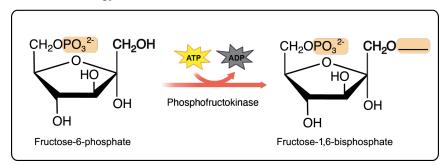

Glycolysis is a sequence of _____ biochemical reactions.

Phase A – Energy-Consuming Phase


- Phase A of glycolysis consists of its first ____ reactions.
 - □ Results in the conversion of 1 glucose molecule to 2 glyceraldehyde-3-phosphate (G3P) molecules.
 - □ Reactions ___ and ___ are irreversible and each consumes 1 ATP for energy.

- 1 Phosphorylation: the enzyme _____ catalyzes the phosphorylation of glucose.
 - □ Uses ATP as a source of energy and _____.



2 Isomerization: the enzyme phosphoglucoisomerase isomerizes glucose-6-phosphate to fructose-6-phosphate.

3 Phosphorylation: the enzyme _____ catalyzes the phosphorylation of fructose-6-phosphate.

□ Uses ATP as a source of energy and _____.

EXAMPLE: Which one of the following statements is incorrect about ATP in glycolysis reactions 1 and 3?

- a) ATP provides the inorganic phosphate for phosphorylation reactions.
- b) Hydrolysis of the high-energy P–O bond in ATP provides energy to carry out phosphorylation.
- c) Energy produced in reactions 1 and 3 is used to synthesize ATP from ADP.
- d) Kinases in reactions 1 and 3 use ATP as the coenzyme.
- 4 Bond Cleavage: the enzyme aldolase cleaves the _____ C-C bond of the fructose ring.
 - □ Results in the formation of 2 _____ phosphates.

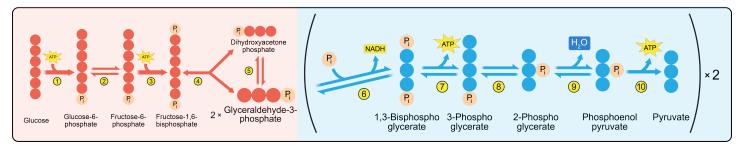
5 Isomerization: Dihydroxyacetone phosphate (DHAP) is isomerized to glyceraldehyde-3-phosphate (G3P).

□ Catalyzed by the enzyme triosephosphate _____.

EXAMPLE: Which one of the following statements is incorrect about glycolysis phase A?

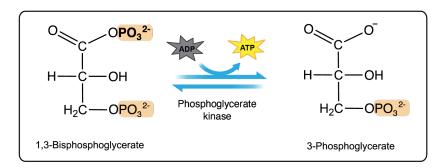
- a) Phosphorylation reactions 1 and 3 are catalyzed by kinases.
- b) Bond cleavage in reaction 4 produces ATP.
- c) Bond cleavage in reaction 4 produces two triose phosphates.
- d) Isomerization of DHAP to G3P is catalyzed by triosephosphate isomerase.

PRACTICE: Classify each one of the following reactions as phosphorylation (P), isomerization (I), or neither (N).


- a) ____ Conversion of glucose into glucose-6-phosphate.
- b) _____ Conversion of glucose-6-phosphate into fructose-6-phosphate.
- c) ____ Conversion of DHAP into G3P.
- d) ____ Cleavage of fructose-1,6-bisphosphate into DHAP and G3P.

PRACTICE: Which one of the following compound pairs is produced by cleavage of fructose-1,6-bisphosphate?

- a) Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate
- b) glyceraldehyde-3-phosphate and glyceraldehyde-2-phosphate
- c) Glyceraldehyde-3-phosphate and CO₂
- d) Dihydroxyacetone phosphate and 3-phosphoglycerate


Phase B - Energy-Producing Phase

- Phase B of glycolysis consists of its last ____ reactions.
 - □ Converts G3P (× 2) to pyruvate (× 2) and extracts energy in the process.
 - □ Produces ___ NADH and ___ ATP molecules.
 - □ Reaction ____ of this phase is irreversible.

- **6** Oxidation × 2: G3P undergoes oxidation to produce 1,3-bisphosphoglycerate (1,3_____).
 - □ Catalyzed by enzyme glyceraldehyde-3-phosphate _____.
 - □ NAD+ is reduced to _____.

- 7 Phosphate Transfer × 2: 1,3-bisphosphoglycerate (BPG) produces 3-phosphoglycerate (3PG) by losing a P_i group.
 - □ Catalyzed by enzyme phosphoglycerate _____.
 - □ ADP gains the P_i group to produce _____.

- 8 Isomerization × 2: 3-phosphoglycerate (3PG) undergoes isomerization to yield 2-phosphoglycerate (2PG).
 - □ Catalyzed by enzyme phosphoglycerate _____.

EXAMPLE: Which one of the following glycolysis reactions will produce an ATP molecule?

- a) 3-Phosphoglycerate to 2-phosphoglycerate
- b) Glyceraldehyde-3-phosphate to 1,3-Bisphosphoglycerate
- c) Glucose to glucose-6-phosphate
- d) 1,3-Bisphosphoglycerate to 3-phosphoglycerate
- 9 Dehydration × 2: 2-phosphoglycerate (2PG) undergoes dehydration to produce phosphoenolpyruvate (PEP).
 - □ Catalyzed by the enzyme _____.

- 10 Phosphate Transfer × 2: PEP yields pyruvate by losing its P_i group.
 - □ Catalyzed by enzyme pyruvate _____
 - □ ADP gains the P_i group to produce _____.

EXAMPLE: Which of the following enzymes catalyzes the conversion of phosphoenolpyruvate to pyruvate?

- a) Pyruvate dehydrogenase
- b) Pyruvate carboxylate
- c) Phosphoenolpyruvate carboxykinase
- d) Pyruvate kinase

PRACTICE: Which enzyme catalyzes the oxidation of glyceraldehyde-3-phosphate in reaction 6 of glycolysis?

- a) glyceraldehyde-3-phosphate dehydrogenase
- b) glyceraldehyde-3-phosphate acyltransferase
- c) glyceraldehyde-3-phosphate oxidase
- d) triosephosphate isomerase

PRACTICE: What is the energy output of reaction 7 of glycolysis (1,3-bisphosphoglycerate to 3-phosphoglycerate)?

- a) 2 ATP
- b) 2 NADH
- c) 1 ATP
- d) 1 NADH and 1 FADH₂

PRACTICE: What product is formed when phosphoglycerate mutase moves the phosphate group in 3-phosphoglycerate?

- a) Dihydroxyacetone phosphate
- b) 2-Phosphoglyceraldehyde
- c) 1,3-Bisphosphoglycerate
- d) 2-Phosphoglycerate