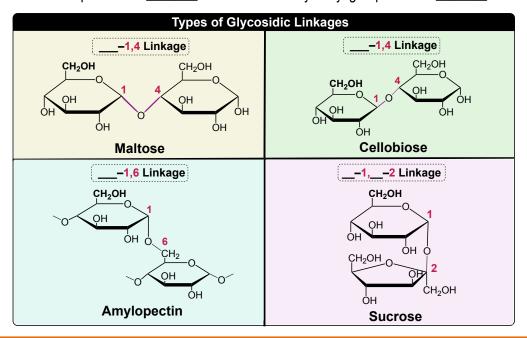

CONCEPT: GLYCOSIDIC LINKAGE

Glycosidic Linkage Formation

- An ______ bond between a sugar's anomeric carbon and another monosaccharide.
 - □ Formed via _____ (loss of water).
 - \Box Glycoside Linkage Formation: + \rightarrow

EXAMPLE: Provide the structure of the disaccharide formed when the hydroxyl groups of the highlighted carbons undergo a dehydration reaction.

Hydrolysis of Glycosidic Linkage


- Under this reaction a glycosidic linkage is hydrolyzed into ____ monosaccharide units.
 - □ **Recall**: hydrolysis is a reaction that breaks down a molecule through addition of _____.
 - Both sugar carbons regain their _____ groups.

EXAMPLE: Provide the monosaccharide units produced by hydrolysis of the following disaccharide.

CONCEPT: GLYCOSIDIC LINKAGE

Alpha vs Beta Linkages

- This type of linkage created is always defined by the linked _____ hydroxyl group.
 - \Box Alpha (α) and beta (β) linkages are defined in the _____ way as cyclic monosaccharides.
 - □ **Exception**: Sucrose possesses _____ linked anomeric hydroxyl groups and so _____ must be named.

EXAMPLE: Melibiose represents a disaccharide that is several magnitudes sweeter than table sugar. Determine the type of glycosidic linkage connecting its two monosaccharide units.

PRACTICE: Lactulose represents a man-made disaccharide that possesses a β -1,4 glycosidic linkage. Determine the two monosaccharide units created from its hydrolysis.