CONCEPT: GLYCOSIDIC LINKAGE ### **Glycosidic Linkage Formation** - An ______ bond between a sugar's anomeric carbon and another monosaccharide. - □ Formed via _____ (loss of water). - \Box Glycoside Linkage Formation: + \rightarrow **EXAMPLE**: Provide the structure of the disaccharide formed when the hydroxyl groups of the highlighted carbons undergo a dehydration reaction. # **Hydrolysis of Glycosidic Linkage** - Under this reaction a glycosidic linkage is hydrolyzed into ____ monosaccharide units. - □ **Recall**: hydrolysis is a reaction that breaks down a molecule through addition of _____. - Both sugar carbons regain their _____ groups. **EXAMPLE**: Provide the monosaccharide units produced by hydrolysis of the following disaccharide. ### **CONCEPT:** GLYCOSIDIC LINKAGE ## Alpha vs Beta Linkages - This type of linkage created is always defined by the linked _____ hydroxyl group. - \Box Alpha (α) and beta (β) linkages are defined in the _____ way as cyclic monosaccharides. - □ **Exception**: Sucrose possesses _____ linked anomeric hydroxyl groups and so _____ must be named. **EXAMPLE**: Melibiose represents a disaccharide that is several magnitudes sweeter than table sugar. Determine the type of glycosidic linkage connecting its two monosaccharide units. **PRACTICE:** Lactulose represents a man-made disaccharide that possesses a β -1,4 glycosidic linkage. Determine the two monosaccharide units created from its hydrolysis.