CONCEPT: TOTAL ENERGY FROM FATTY ACIDS

- To calculate the total ATP yield from complete oxidation of fatty acid, we must consider:
 - □ ATP from _____ oxidation in citric acid cycle.
 - □ ATP from _____ and ____ in oxidative phosphorylation.

	1 Cycle of β -oxidation	Krebs Cycle (Citric Acid)	Oxidative Phosphorylation	TOTALS
Start Molecule	Fatty Acid	1 Acetyl-CoA	NADH & FADH ₂	
ATP				
FADH ₂				
NADH				
End Molecule	Acetyl-CoA	Oxaloacetate	H ₂ O	

-___ NADH x 2.5 ATP = ____ ATP
+ ___ FADH₂ x 1.5 ATP = ____ ATP
ATP molecules*

Common metabolic pathway

EXAMPLE: Calculate total ATP yield from complete β -oxidation of myristic acid.

STEP 1: Calculate number of ______ of β -oxidation.

$$\# \text{ of cycles} = \frac{\# C}{2} - 1$$

STEP 2: Calculate total NADH and FADH₂ produced during _____-oxidation.

□ Equals to number of _____.

STEP 3: Calculate total ATP, NADH and FADH₂ produced during _____ acid cycle.

 \Box Depends on number of acetyl CoA molecules from β -oxidation.

 $\textbf{STEP 4:} \ \, \textbf{Convert} \, \underline{\hspace{1cm}} \ \, \textbf{NADH and FADH}_2 \ \, \textbf{to} \, \underline{\hspace{1cm}} \ \, \textbf{from oxidative phosphorylation}.$

 \Box 1 NADH = 2.5 ATP, 1 FADH₂ = 1.5 ATP.

STEP 5: Add all ATPs, subtract _____ ATP.

CONCEPT: TOTAL ENERGY FROM FATTY ACIDS

PRACTICE: Rank the following molecules based on amount of energy stored in them in increasing order (per molecules)	olecules based on amount of energy stored	d in them in increasing order (per mo
--	---	---------------------------------------

I. Sucrose II. Arachidic III. Glucose IV. Behenic (22:0)

a) I, III, II, IV

b) III, I, II, IV

c) II, IV, III, I

d) IV, II, I, III

PRACTICE: Provide total moles of ATP produced by complete β -oxidation of 3.4 g of palmitic acid (256.43 g/mol).