CONCEPT: TOTAL ENERGY FROM FATTY ACIDS - To calculate the total ATP yield from complete oxidation of fatty acid, we must consider: - □ ATP from _____ oxidation in citric acid cycle. - □ ATP from _____ and ____ in oxidative phosphorylation. | | 1 Cycle of β -oxidation | Krebs Cycle
(Citric Acid) | Oxidative Phosphorylation | TOTALS | |-------------------|-------------------------------|------------------------------|---------------------------|--------| | Start
Molecule | Fatty Acid | 1 Acetyl-CoA | NADH & FADH ₂ | | | ATP | | | | | | FADH ₂ | | | | | | NADH | | | | | | End
Molecule | Acetyl-CoA | Oxaloacetate | H ₂ O | | -___ NADH x 2.5 ATP = ____ ATP + ___ FADH₂ x 1.5 ATP = ____ ATP ATP molecules* Common metabolic pathway **EXAMPLE:** Calculate total ATP yield from complete β -oxidation of myristic acid. **STEP 1:** Calculate number of ______ of β -oxidation. $$\# \text{ of cycles} = \frac{\# C}{2} - 1$$ **STEP 2:** Calculate total NADH and FADH₂ produced during _____-oxidation. □ Equals to number of _____. **STEP 3:** Calculate total ATP, NADH and FADH₂ produced during _____ acid cycle. \Box Depends on number of acetyl CoA molecules from β -oxidation. $\textbf{STEP 4:} \ \, \textbf{Convert} \, \underline{\hspace{1cm}} \ \, \textbf{NADH and FADH}_2 \ \, \textbf{to} \, \underline{\hspace{1cm}} \ \, \textbf{from oxidative phosphorylation}.$ \Box 1 NADH = 2.5 ATP, 1 FADH₂ = 1.5 ATP. **STEP 5:** Add all ATPs, subtract _____ ATP. ## **CONCEPT:** TOTAL ENERGY FROM FATTY ACIDS | PRACTICE: Rank the following molecules based on amount of energy stored in them in increasing order (per molecules) | olecules based on amount of energy stored | d in them in increasing order (per mo | |--|---|---------------------------------------| |--|---|---------------------------------------| I. Sucrose II. Arachidic III. Glucose IV. Behenic (22:0) a) I, III, II, IV b) III, I, II, IV c) II, IV, III, I d) IV, II, I, III **PRACTICE:** Provide total moles of ATP produced by complete β -oxidation of 3.4 g of palmitic acid (256.43 g/mol).