CONCEPT: Ka AND Kb

As you might already realize, there are relatively few strong acids. The great majority of acids are weak acids.

Consider a weak monoprotic acid, HA, and its ionization in water:

$$HA (aq) + H_2O (I)$$
 \longrightarrow $A^- (aq) + H_3O^+ (aq)$

The equilibrium expression for this ionization would be:

$$K_a = \frac{Products}{Reactants} =$$

Where Ka represents the		and it measur	es the strength of weak acids.
When looking at weak bases	we don't use K _a , but instead	_, which represents the _	
The relationship between K _a and K _b can be expressed		n the following equation:	$K_W = K_a \cdot K_b$
In general, the	the K_a the stronger the acid the p K_a the stronger the acid		the concentration of H ⁺ . the concentration of H ⁺ .

PRACTICE: If the K_b of NH₃ is 1.76 x 10⁻⁵, determine the acid dissociation constant of its conjugate acid.

EXAMPLE: Knowing that HF has a higher K_a value than CH₃COOH, determine, if possible, in which direction the following equilibrium lies.

$$HF (aq) + CH3COO - (aq) = F - (aq) + CH3COOH (aq)$$

- a) Equilibrium lies to the left
- b) Equilibrium lies to the right
- c) Equilibrium is equal and balanced
- d) Not enough information given

CONCEPT: Ka AND Kb

PRACTICE: Which Bronsted-Lowry base has the greatest concentration of hydroxide ions?

- a) $C_2H_8N_2$ (K_b = 8.3 x 10⁻⁵)
- b) C_5H_5N ($K_b = 1.7 \times 10^{-9}$)
- c) $(CH_3)_3N$ $(K_b = 1.0 \times 10^{-6})$
- d) $C_3H_7NH_2$ ($K_b = 3.5 \times 10^{-4}$)
- e) $C_6H_5NH_2$ (K_b = 3.9 x 10⁻¹⁰)

PRACTICE: Which Bronsted-Lowry acid has the weakest conjugate base?

- a) HCNO $(K_a = 2.0 \times 10^{-4})$
- b) HF $(K_a = 3.5 \times 10^{-4})$
- c) HN_3 ($K_a = 2.5 \times 10^{-5}$)
- d) H_2CO_3 ($K_a = 4.3 \times 10^{-7}$)