CONCEPT: Ka AND Kb As you might already realize, there are relatively few strong acids. The great majority of acids are weak acids. Consider a weak monoprotic acid, HA, and its ionization in water: $$HA (aq) + H_2O (I)$$ \longrightarrow $A^- (aq) + H_3O^+ (aq)$ The equilibrium expression for this ionization would be: $$K_a = \frac{Products}{Reactants} =$$ | Where Ka represents the | | and it measur | es the strength of weak acids. | |---|---|---------------------------|---| | When looking at weak bases | we don't use K _a , but instead | _, which represents the _ | | | The relationship between K _a and K _b can be expressed | | n the following equation: | $K_W = K_a \cdot K_b$ | | In general, the | the K_a the stronger the acid the p K_a the stronger the acid | | the concentration of H ⁺ . the concentration of H ⁺ . | **PRACTICE:** If the K_b of NH₃ is 1.76 x 10⁻⁵, determine the acid dissociation constant of its conjugate acid. **EXAMPLE:** Knowing that HF has a higher K_a value than CH₃COOH, determine, if possible, in which direction the following equilibrium lies. $$HF (aq) + CH3COO - (aq) = F - (aq) + CH3COOH (aq)$$ - a) Equilibrium lies to the left - b) Equilibrium lies to the right - c) Equilibrium is equal and balanced - d) Not enough information given ## **CONCEPT:** Ka AND Kb PRACTICE: Which Bronsted-Lowry base has the greatest concentration of hydroxide ions? - a) $C_2H_8N_2$ (K_b = 8.3 x 10⁻⁵) - b) C_5H_5N ($K_b = 1.7 \times 10^{-9}$) - c) $(CH_3)_3N$ $(K_b = 1.0 \times 10^{-6})$ - d) $C_3H_7NH_2$ ($K_b = 3.5 \times 10^{-4}$) - e) $C_6H_5NH_2$ (K_b = 3.9 x 10⁻¹⁰) PRACTICE: Which Bronsted-Lowry acid has the weakest conjugate base? - a) HCNO $(K_a = 2.0 \times 10^{-4})$ - b) HF $(K_a = 3.5 \times 10^{-4})$ - c) HN_3 ($K_a = 2.5 \times 10^{-5}$) - d) H_2CO_3 ($K_a = 4.3 \times 10^{-7}$)