CONCEPT: LE CHATELIER'S PRII	<u>NCIPLE</u>	
Earlier you learned that	studied the rate at w	hich our reactants changed into products.
In this chapter you will learn that		deals with the direction that a chemical reaction a
equilibrium will shift.		
	_ Principle states that once a	system that is at equilibrium is disturbed it will do whateve
it can to get back to equilibrium.		
EXAMPLE : For the following endothermic reaction $K_c = 6.73 \times 10^3$. Predict in which direction the reaction will proceed.		
	4 NH ₃ (g) + 3 O ₂ (g)	2 N ₂ (g) + 6 H ₂ O (g)
a) Addition of a catalyst		b) Decreasing the volume
c) Removing H ₂ O (g)		d) Increasing the Temperature
a) Addition of NILLs (a)		f) Degraceing the procesure
e) Addition of NH ₃ (g)		f) Decreasing the pressure
g) Removing H ₂ O (I)		h) Addition of a precipitate
g) 1.557111g 1120 (1)		11) Tradition of a prodipitate

i) The addition of an inert gas at constant volume.

CONCEPT: LE CHATELIER'S PRINCIPLE

PRACTICE: Consider the reaction below:

$$CH_4(g) + F_2(g) - CF_4(g) + HF(g) \Delta H = +38.1 \text{ KJ/mol}$$

The following changes will shift the equilibrium to the <u>left</u> except one. Which one would not cause a shift to the <u>left</u>?

- a) Add some CF₄.
- b) Remove some F₂.
- c) Decrease the Temperature.
- d) Decrease the container volume.
- e) Increase the partial pressure of HF.

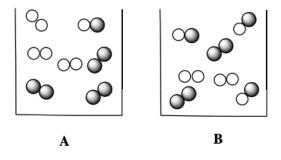
PRACTICE: The following data was collected for the following reaction at equilibrium:

$$2 A (g) + 3 B (g) - C (g)$$

At 25°C, K is 5.2 x 10⁻⁴ and at 50°C K is 1.7 x 10⁻⁷. Which of the following statements is true?

- a) The reaction is exothermic
- b) The reaction is endothermic
- c) The enthalpy change, $\Delta H,$ is equal to zero
- d) Not enough information is given

CONCEPT: LE CHATELIER'S PRINCIPLE


PRACTICE: Which direction will the following reaction (in a 10.0 L flask) proceed if a catalyst is added to the system?

CaCO₃ (s)
$$\leftarrow$$
 CaO (s) + CO₂ (g) $K_p = 3.2 \times 10^{-28}$

- a) To the right.
- b) To the left.
- c) The equilibrium position will not change but the rate will increase.
- d) The equilibrium position will not change but the concentrations of everything will increase.

PRACTICE: Consider the following gas reaction of A₂ (shaded spheres) and B₂ (unshaded spheres)

Which container proceeds more to completion?

