CONCEPT: TOTAL ENERGY FROM GLUCOSE • Complete oxidation of ____ glucose molecule produces the following: | Metabolism of 1 Glucose Molecule | | | | | | | |----------------------------------|--|--|--|--|--|--| | Glycolysis: | Glucose ———————————————————————————————————— | | | | | | | Pyruvate Oxidation: | 2 Pyruvate 2 Acetyl CoA + 2 NADH + CO ₂ | | | | | | | Krebs Cycle: | 2 Acetyl CoA | | | | | | **EXAMPLE:** Glycolysis yields ____ ATP and ____ NADH molecules, pyruvate oxidation yields ____ NADH molecules. • Total ______ yield from 1 glucose molecule is summarized in the table below. | | Glycolysis | Pyruvate
Oxidation | Krebs Cycle
(Citric Acid) | Oxidative Phosphorylation | TOTALS | |-------------------|------------|-----------------------|------------------------------|---------------------------|--------| | Start
Molecule | Glucose | 2 Pyruvate | 2 Acetyl-CoA | NADH & FADH ₂ | | | 0-0-0 | | | 4 | 0 | | | АТР | | | 2 | | | | FADH ₂ | | | 2 | 0 | | | NADH | | | 6 | 0 | | | End
Molecule | 2 Pyruvate | 2 Acetyl-CoA | Oxaloacetate | H ₂ O | | • ATP yield through oxidative phosphorylation: ## CONCEPT: TOTAL ENERGY FROM GLUCOSE PRACTICE: Which stage of glucose metabolism produces the majority of ATP? a) Citric acid cycle b) Digestion c) ETC + Oxidative Phosphorylation d) Glycolysis PRACTICE: How many total equivalent ATP molecules would be produced from 3 moles of glucose through glycolysis in aerobic environment? a) 2 ATP b) 6 ATP c) 7 ATP d) 21 ATP **PRACTICE:** The total equivalent ATP yield from: 2 pyruvate → 2 Acetyl CoA + 2 CO₂. c) 5 ATP d) 10 ATP b) 2 ATP a) 0 ATP