CONCEPT: TOTAL ENERGY FROM GLUCOSE

• Complete oxidation of ____ glucose molecule produces the following:

Metabolism of 1 Glucose Molecule						
Glycolysis:	Glucose ————————————————————————————————————					
Pyruvate Oxidation:	2 Pyruvate 2 Acetyl CoA + 2 NADH + CO ₂					
Krebs Cycle:	2 Acetyl CoA					

EXAMPLE: Glycolysis yields ____ ATP and ____ NADH molecules, pyruvate oxidation yields ____ NADH molecules.

• Total ______ yield from 1 glucose molecule is summarized in the table below.

	Glycolysis	Pyruvate Oxidation	Krebs Cycle (Citric Acid)	Oxidative Phosphorylation	TOTALS
Start Molecule	Glucose	2 Pyruvate	2 Acetyl-CoA	NADH & FADH ₂	
0-0-0			4	0	
АТР			2		
FADH ₂			2	0	
NADH			6	0	
End Molecule	2 Pyruvate	2 Acetyl-CoA	Oxaloacetate	H ₂ O	

• ATP yield through oxidative phosphorylation:

CONCEPT: TOTAL ENERGY FROM GLUCOSE PRACTICE: Which stage of glucose metabolism produces the majority of ATP? a) Citric acid cycle b) Digestion c) ETC + Oxidative Phosphorylation d) Glycolysis PRACTICE: How many total equivalent ATP molecules would be produced from 3 moles of glucose through glycolysis in aerobic environment? a) 2 ATP b) 6 ATP c) 7 ATP d) 21 ATP

PRACTICE: The total equivalent ATP yield from: 2 pyruvate → 2 Acetyl CoA + 2 CO₂.

c) 5 ATP

d) 10 ATP

b) 2 ATP

a) 0 ATP