CONCEPT: MOLECULAR FORMULA

• Recall, the molecular formula gives the _____ number of different elements in a given compound.

Compound	Empirical Formula	n-factor	Molecular Formula
Glucose	CH ₂ O		
Octane	C ₄ H ₉		
Salicylic Acid	C ₇ H ₆ O ₃		

Calculating the Molecular Formula

• Once the empirical formula is determined, the molecular formula can be obtained if the _____ is also known.

EXAMPLE: After a workout session, lactic acid ($\mathcal{M} = 90.08 \text{ g/mol}$) forms in muscle tissue and is responsible for muscle soreness. Elemental analysis shows that this compound contains 40% C, 6.7% H and 53.3% O. Determine the molecular formula.

STEP 1: Repeat the steps necessary to determine the empirical formula of the compound.

STEP 2: Calculate the _____ mass of the compound.

STEP 3: Divide the **molar mass** of the molecular formula by the **empirical mass** to determine the **n-factor**.

STEP 4: Multiply the ______ of the empirical formula by the **n-factor** to get the molecular formula.

CONCEPT: MOLECULAR FORMULA			
PRACTICE: What is the molecular formula for the	ne following compou	ind?	
Empirical Formula	: NPCl ₂	Molar Mass: 347.64 g/	mol
PRACTICE: Cortisol (M = 362.47 g/mol), a know	wn steroid hormone	, is found to contain 69.6°	% carbon, 8.34% hydrogen,
and 22.1% oxygen by mass. What is its molecular	ar formula?		
PRACTICE: Elemental analysis of a pure compo	ound indicated that t	he compound had 72.2%	C, 8.50% H and the remainde
as O. If 0.250 moles of the compound weighs 41	1.55 g, what is the m	nolecular formula of the co	ompound?