CONCEPT: AMINO ACID CATABOLISM: CARBON ATOMS

Glucogenic vs Ketogenic Amino Acids

• /	Amino	acid	s can	be ca	ategorized	based	on w	/hethe	they the	can	syntl	hesiz	ze gl	ucose	or	ketone	bodie	es.

□ Glucogenic Amino Acids: only synthesize _____.

□ **Ketogenic Amino Acids:** only synthesize _____ bodies.

Glucogenic vs Ketogenic Amino Acids									
	Glucogenic	Ketogenic	Both						
Alanine	Glutamate	Proline	Leucine	Ph enylalanine					
Arginine	Glutamine	Serine	Lysine	Isoleucine					
Asparagine	Glycine	Valine		Threonine					
Aspartate	Histidine			Tryptophan					
Cysteine	Methionine			Tyrosine					
(

MEMORY TOOL:

EXAMPLE: Label each amino acid as glucogenic (G), ketogenic (K), or both (B).							
a) Serine							
b) Lysine							
c) Glutamine							
d) Tryptophan							

PRACTICE: Identify amino acid that is considered to be glucogenic but not ketogenic.

- a) Phenylalanine
- b) Leucine
- c) Tyrosine
- d) Aspartate
- e) Lysine

CONCEPT: AMINO ACID CATABOLISM: CARBON ATOMS

Fate of Amino Acid Carbon Atoms

- **Recall**: transamination produces an α -keto acid.
- \bullet C atoms of α -keto acid are converted to 1 or more of the 7 _____ producing intermediates.
 - ☐ Citric acid cycle intermediates can be used to synthesize through gluconeogenesis.
 - □ Acetyl CoA and Acetoacetyl CoA can be used to synthesize bodies through ketogenesis.
 - Based on the metabolic pathways, some amino acids can synthesize both.

NOTE: _____ cannot create glucose because it uses oxaloacetate at the beginning of citric acid cycle.

EXAMPLE: Select correct statement about amino acid intermediates.

- a) Tyrosine is only ketogenic because it produces acetoacetyl CoA.
- b) Aspartate is considered glucogenic and ketogenic because it degrades to 2 intermediates of Krebs cycle.
- c) Isoleucine can be used to synthesize glucose and ketone bodies due to the 2 different intermediates it can form.
- d) Pyruvate is the product of only glucogenic amino acids.

CONCEPT: AMINO ACID CATABOLISM: CARBON ATOMS

Remembering Amino Acid Intermediates

MEMORY TOOL 1: Pyruvate: Glycine, Tryptophan, Cysteine, Serine, Threonine, Alanine.							
irate	esiding inater,o	winggae.					
MEMORY TOOL 2: Oxa	aloacetate: Aspartate, Asparagine.						
en	ıire to eatus.						
MEMORY TOOL 3: α-k	tetoglutarate : Proline, Histidine, Arginine, Glutamate, Glutamine.						
re	ed eatingtein to fuel ms and both	<u></u> .					
MEMORY TOOL 4: Suc	ccinyl CoA: Valine, Methionine, Isoleucine.						
	ulentanillaelonce-cream.						
MEMORY TOOL 5: Fun	marate: Tyrosine, Phenylalanine, Aspartate.						
riou	iseslying onhalt.						
MEMORY TOOL 6: Ace	etyl CoA: Isoleucine, Leucine, Threonine, Tryptophan.						
	osing ad placey.						
MEMORY TOOL 7: Ace	etoacetyl CoA: Tyrosine, Leucine, Lysine, Tryptophan, Phenylala	anine.					
ly	yningoosenotsithlowers.						
EXAMPLE: Select the o	correct list of amino acids from which pyruvate can be metabolize	ed.					
a) Alanine, Methionine, Aspartate, Glutamine, Tyrosine, Isoleucine.							
b) Isoleucine, Aspartate, Threonine, Tyrosine, Lysine.							
c) Tryptophan, Alanine, Cysteine, Glycine, Serine, Threonine.							
d) Phenylalanine, Tryptophan, Tyrosine, Leucine, Lysine.							

PRACTICE: Which intermediate can be produced from degradation of carbon atoms in glutamate?

- a) α -Ketoglutarate
- b) Pyruvate
- c) Acetyl CoA
- d) Succinyl CoA