CONCEPT: QUATERNARY PROTEIN STRUCTURE

- The quaternary structure of a protein is its _____ level of complexity.
 - □ Results from the interactions between R side chains of _____ or more *subunits*.
 - □ **Subunit:** An individual polypeptide chain possessing a structure.
 - □ **Multimeric Protein:** a fully protein that possesses multiple subunits.
 - Dimer = ____ subunits Trimer = ____ subunits Tetramer = ____ subunits

• Prosthetic Group: a _____ component that forms a part of the quaternary structure of a protein.

EXAMPLE: Which of the following is/are true for the protein structure of an E. Coli sample?

- a) The quaternary structure is dimeric in nature and held together by non-covalent bonds.
- b) The quaternary structure is tetrameric in nature and held together by covalent bonds.
- c) The quaternary structure is monomeric in nature and held together by covalent bonds.
- d) The quaternary structure is trimeric in nature and held together by non-covalent bonds.

PRACTICE: Hemoglobin represents a commonly discussed tetramer that contains an even number of α and β subunits. Which of the following statements is true?

- a) Hemoglobin must contain with 4 α subunits and 4 β subunits.
- b) Hemoglobin must contain with 2 α subunits and 2 β subunits.
- c) Hemoglobin contains R groups that only covalently bind to produce a quaternary structure.
- d) Hemoglobin represents a multimeric protein with identical subunits.

CONCEPT: QUATERNARY PROTEIN STRUCTURE

PRACTICE: Which of the following could be classified as a prosthetic group?

$$H_3$$
 H_3 H_3 H_3 H_3 H_4 H_4 H_5 H_5 H_5 H_6 H_8 H_8

PRACTICE: Which of the following correctly orders the protein structural terms from lowest to highest complexity?

- a) Peptide Bond < Primary structure < 2 subunits < Secondary structure < tetramer < Tertiary structure.
- b) Primary structure < Peptide Bond < Secondary structure < 2 subunits < Tertiary Structure < tetramer
- c) Peptide Bond < Primary structure < Secondary structure < Tertiary structure < 2 subunits < tetramer
- d) Peptide Bond < Primary Structure < Secondary structure < 2 subunits < Tertiary structure < tetramer