<u>CONCEPT:</u>	ENZYME	REGULAT	ION: COV	VALENT	<u>MODIFICA</u>	MOIT

Enzyme activity can be regulated by _____ or ___ of groups on the enzyme polypeptide chain.
 Two types: 1) Zymogens (_____) and 2) Phosphorylation/dephosphorylation

Zymogens

- Zymogens are enzymes produced in _____ form with an extra polypeptide segment.
 - □ Activated by _____ of the extra polypeptide segment by hydrolysis.

EXAMPLE: Which of the following statements is not relevant to zymogens?

- a) Zymogens are inactive because the excess polypeptide chain alters their overall structure.
- b) Enzyme activation by loss of some part of peptide chain is a type of covalent modification.
- c) Trypsinogen is converted into active trypsin by the hydrolysis of a hexapeptide segment from its backbone.
- d) Citrate can attach to a non-active site of the phosphofructokinase enzyme and decrease its activity.

PRACTICE: Match the terms (a) allosteric control, (b) feedback control, and (c) zymogen activation with each of the following:

______ Pepsinogen is converted into its active form (pepsin) by losing 44 amino acids from its primary structure.

_____ A small molecule attaches to the enzyme and makes an active site available to a substrate.

_____ The end-product of a metabolic pathway decreases the activity of the enzyme in the first step.

_____ Alanine binds to pyruvate kinase and reduces active site availability for the enzyme's substrate.

CONCEPT: ENZYME REGULATION: COVALENT MODIFICATION

Phosphorylation/Dephosphorylation

• Addition or removal of _____ groups to the enzyme polypeptide chain alters enzyme activity.

Phosphorylation Kinase Active Enzyme Dephosphorylation Phosphatase Active Enzyme Active Enzyme Active Enzyme

EXAMPLE: Which of the following is true about covalent modification?

- a) A zymogen loses its activity when a peptide segment is removed from its primary structure.
- b) Addition or removal of a phosphate group has no effect on enzyme activity.
- c) A zymogen is activated by removal of hydroxy groups from its polypeptide backbone.
- d) Phosphatase removes a phosphate group from an enzyme by breaking a covalent bond.

PRACTICE: Match the terms (a) allosteric control, (b) feedback control, (c) zymogen activation, and

(d) phosphorylation/dephosphorylation with each of the following:

______ Proline inhibits glutamate 5-kinase, the enzyme in the first step of the biosynthesis of proline from glutamate.

_____ Glycogen synthase loses its catalytic activity when it is phosphorylated.

_____ Proelastase is converted to its active form elastase when it loses some part of its polypeptide backbone.

_____ Adenosine monophosphate binds to phosphofructokinase-1 and increases its activity.