CONCEPT: BRONSTED LOWRY ACIDS & BASES

In 1923, Johannes Brønsted and Thomas Lowry developed a new set of definitions for acids and bases.

According to the Bronsted-Lowry definition, acids are considered	and bases are
considered	
Unlike Arrhenius acids and bases, they are not limited to aqueous solutions.	
Every Arrhenius acid is a Brønsted-Lowry acid (and likewise for the bases).	
Brønsted-Lowry acids and bases always occur in pairs called	
EXAMPLE: Write the formula of the conjugate base for the following compound: HSO ₄ -	
EXAMPLE: Write the formula of the conjugate acid for the following compound: $V_2O_5^{2-}$	
PRACTICE: Write the formula of the <u>conjugate base</u> for the following compound:	
PRACTICE: Write the formula of the conjugate for the following compound: NH ₂ NH ₂	

PRACTICE: BRONSTED LOWRY ACIDS & BASES

EXAMPLE: Identify the acid, base, conjugate acid and conjugate base in the following reactions:

- a) HF (aq)
- H_2O (aq) F^- (aq)
- H_3O^+ (aq)

EXAMPLE: Identify the acid, base, conjugate acid and conjugate base in the following reactions:

- a) CN (aq)
- H₂O (aq)
- HCN (aq)
- OH (aq)

PRACTICE: Which of the following is a Bronsted-Lowry acid?

- a) CH₄
- b) HCN

c) NH₃

d) Br₂

PRACTICE: Determine the chemical equation that would result when carbonate, CO₃²⁻, reacts with water.

$$CO_3^{2-}$$
 (aq) + H_2O (I) \frown CO_3^{-} (aq) + OH^{-}